دانلود مقاله ISI انگلیسی شماره 101398
ترجمه فارسی عنوان مقاله

پیش بینی حرکت یک روزه در بازار سهام با استفاده از منابع اطلاعات متناقض

عنوان انگلیسی
Stock market one-day ahead movement prediction using disparate data sources
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی ترجمه فارسی
101398 2017 25 صفحه PDF سفارش دهید
دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله تقریباً شامل 9178 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 12 تومان 16 روز بعد از پرداخت 110,136 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 24 تومان 8 روز بعد از پرداخت 220,272 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 79, 15 August 2017, Pages 153-163

پیش نمایش مقاله
پیش نمایش مقاله پیش بینی حرکت یک روزه در بازار سهام با استفاده از منابع اطلاعات متناقض

چکیده انگلیسی

There are several commercial financial expert systems that can be used for trading on the stock exchange. However, their predictions are somewhat limited since they primarily rely on time-series analysis of the market. With the rise of the Internet, new forms of collective intelligence (e.g. Google and Wikipedia) have emerged, representing a new generation of “crowd-sourced” knowledge bases. They collate information on publicly traded companies, while capturing web traffic statistics that reflect the public’s collective interest. Google and Wikipedia have become important “knowledge bases” for investors. In this research, we hypothesize that combining disparate online data sources with traditional time-series and technical indicators for a stock can provide a more effective and intelligent daily trading expert system. Three machine learning models, decision trees, neural networks and support vector machines, serve as the basis for our “inference engine”. To evaluate the performance of our expert system, we present a case study based on the AAPL (Apple NASDAQ) stock. Our expert system had an 85% accuracy in predicting the next-day AAPL stock movement, which outperforms the reported rates in the literature. Our results suggest that: (a) the knowledge base of financial expert systems can benefit from data captured from nontraditional “experts” like Google and Wikipedia; (b) diversifying the knowledge base by combining data from disparate sources can help improve the performance of financial expert systems; and (c) the use of simple machine learning models for inference and rule generation is appropriate with our rich knowledge database. Finally, an intelligent decision making tool is provided to assist investors in making trading decisions on any stock, commodity or index.

دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله شامل 9178 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 12 تومان 16 روز بعد از پرداخت 110,136 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 24 تومان 8 روز بعد از پرداخت 220,272 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.