دانلود مقاله ISI انگلیسی شماره 107919
کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
107919 2018 20 صفحه PDF سفارش دهید 12210 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
A novel approach for software defect prediction through hybridizing gradual relational association rules with artificial neural networks
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 441, May 2018, Pages 152-170

پیش نمایش مقاله
پیش نمایش مقاله

چکیده انگلیسی

The growing complexity of software projects requires increasing consideration of their analysis and testing. Identifying defective software entities is essential for software quality assurance and it also improves activities related to software testing. In this study, we developed a novel supervised classification method called HyGRAR for software defect prediction. HyGRAR is a non-linear hybrid model that combines gradual relational association rule mining and artificial neural networks to discriminate between defective and non-defective software entities. Experiments performed based on 10 open-source data sets demonstrated the excellent performance of the HYGRAR classifier. HyGRAR performed better than most of the previously proposed approaches for software defect prediction in performance evaluations using the same data sets.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.