دانلود مقاله ISI انگلیسی شماره 136592
کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
136592 2017 19 صفحه PDF سفارش دهید 12410 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Multimodal optimization: An effective framework for model calibration
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 375, 1 January 2017, Pages 79-97

پیش نمایش مقاله
پیش نمایش مقاله

چکیده انگلیسی

Automated calibration is a crucial stage when validating non-linear dynamic systems. The modeler must control the calibration results and analyze parameter values in an iterative way. In many non-linear models, it is usual to find sets of configuration parameters that may obtain the same model fitting. In these cases, the modeler needs to understand the results’ implications and run a sensitivity analysis to check the model validity. This paper presents a framework based on niching genetic algorithms to provide modeler with a set of alternative calibration solutions which also ease the analysis of their parameters, model’s response, and sensitivity analysis. The framework is called MOMCA, an integral and interactive solution for model validation which facilitates the implication of decision makers. The core component of MOMCA is its niching genetic algorithm, able to reach various optima in multimodal optimization problems by keeping the necessary diversity. The proposed framework is applied to two different case studies. The first case study is a biological growth model and the second one is a managerial model to improve brand equity. Both applications show the benefits of the framework when providing a set of calibrated models and a way to analyze and perform sensitivity analysis based on the set of solutions.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.