دانلود مقاله ISI انگلیسی شماره 146024
ترجمه فارسی عنوان مقاله

مدل های یادگیری ماشین و پیش بینی ورشکستگی

عنوان انگلیسی
Machine learning models and bankruptcy prediction
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی ترجمه فارسی
146024 2017 13 صفحه PDF سفارش دهید
دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله تقریباً شامل 10566 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 12 تومان 17 روز بعد از پرداخت 126,792 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 24 تومان 9 روز بعد از پرداخت 253,584 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 83, 15 October 2017, Pages 405-417

پیش نمایش مقاله
پیش نمایش مقاله مدل های یادگیری ماشین و پیش بینی ورشکستگی

چکیده انگلیسی

There has been intensive research from academics and practitioners regarding models for predicting bankruptcy and default events, for credit risk management. Seminal academic research has evaluated bankruptcy using traditional statistics techniques (e.g. discriminant analysis and logistic regression) and early artificial intelligence models (e.g. artificial neural networks). In this study, we test machine learning models (support vector machines, bagging, boosting, and random forest) to predict bankruptcy one year prior to the event, and compare their performance with results from discriminant analysis, logistic regression, and neural networks. We use data from 1985 to 2013 on North American firms, integrating information from the Salomon Center database and Compustat, analysing more than 10,000 firm-year observations. The key insight of the study is a substantial improvement in prediction accuracy using machine learning techniques especially when, in addition to the original Altman’s Z-score variables, we include six complementary financial indicators. Based on Carton and Hofer (2006), we use new variables, such as the operating margin, change in return-on-equity, change in price-to-book, and growth measures related to assets, sales, and number of employees, as predictive variables. Machine learning models show, on average, approximately 10% more accuracy in relation to traditional models. Comparing the best models, with all predictive variables, the machine learning technique related to random forest led to 87% accuracy, whereas logistic regression and linear discriminant analysis led to 69% and 50% accuracy, respectively, in the testing sample. We find that bagging, boosting, and random forest models outperform the others techniques, and that all prediction accuracy in the testing sample improves when the additional variables are included. Our research adds to the discussion of the continuing debate about superiority of computational methods over statistical techniques such as in Tsai, Hsu, and Yen (2014) and Yeh, Chi, and Lin (2014). In particular, for machine learning mechanisms, we do not find SVM to lead to higher accuracy rates than other models. This result contradicts outcomes from Danenas and Garsva (2015) and Cleofas-Sanchez, Garcia, Marques, and Senchez (2016), but corroborates, for instance, Wang, Ma, and Yang (2014), Liang, Lu, Tsai, and Shih (2016), and Cano et al. (2017). Our study supports the applicability of the expert systems by practitioners as in Heo and Yang (2014), Kim, Kang, and Kim (2015) and Xiao, Xiao, and Wang (2016).

دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله شامل 10566 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 12 تومان 17 روز بعد از پرداخت 126,792 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 24 تومان 9 روز بعد از پرداخت 253,584 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.