دانلود مقاله ISI انگلیسی شماره 148233
کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
148233 2018 18 صفحه PDF سفارش دهید 8215 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
The Growing Curvilinear Component Analysis (GCCA) neural network
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neural Networks, Volume 103, July 2018, Pages 108-117

پیش نمایش مقاله
پیش نمایش مقاله

چکیده انگلیسی

Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the information. DR can be performed by linear and nonlinear algorithms. In general, linear algorithms are faster because of less computational burden. A related problem is dealing with time-varying high dimensional data, where the time dependence is due to nonstationary data distribution. Data stream algorithms are not able to project in lower dimensional spaces. Indeed, only linear projections, like principal component analysis (PCA), are used in real time while nonlinear techniques need the whole database (offline). The Growing Curvilinear Component Analysis (GCCA) neural network addresses this problem; it has a self-organized incremental architecture adapting to the changing data distribution and performs simultaneously the data quantization and projection by using CCA, a nonlinear distance-preserving reduction technique. This is achieved by introducing the idea of “seed”, pair of neurons which colonize the input domain, and “bridge”, a novel kind of edge in the manifold graph, which signals the data non-stationarity. Some artificial examples and a real application are given, with a comparison with other existing techniques.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.