دانلود مقاله ISI انگلیسی شماره 148900
ترجمه فارسی عنوان مقاله

برنامه ریزی و یادگیری افزایشی کارآمد با نمودارهای تصمیم گیری چند متغیر

عنوان انگلیسی
Efficient incremental planning and learning with multi-valued decision diagrams
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی ترجمه فارسی
148900 2017 51 صفحه PDF سفارش دهید
دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله تقریباً شامل 16027 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 12 تومان 24 روز بعد از پرداخت 192,324 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 24 تومان 12 روز بعد از پرداخت 384,648 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Applied Logic, Volume 22, July 2017, Pages 63-90

پیش نمایش مقاله
پیش نمایش مقاله برنامه ریزی و یادگیری افزایشی کارآمد با نمودارهای تصمیم گیری چند متغیر

چکیده انگلیسی

In the domain of decision theoretic planning, the factored framework (Factored Markov Decision Process, fmdp) has produced optimized algorithms using structured representations such as Decision Trees (Structured Value Iteration (svi), Structured Policy Iteration (spi)) or Algebraic Decision Diagrams (Stochastic Planning Using Decision Diagrams (spudd)). Since it may be difficult to elaborate the factored models used by these algorithms, the architecture sdyna, which combines learning and planning algorithms using structured representations, was introduced. However, the state-of-the-art algorithms for incremental learning, for structured decision theoretic planning or for reinforcement learning require the problem to be specified only with binary variables and/or use data structures that can be improved in term of compactness. In this paper, we propose to use Multi-Valued Decision Diagrams (mdds) as a more efficient data structure for the sdyna architecture and describe a planning algorithm and an incremental learning algorithm dedicated to this new structured representation. For both planning and learning algorithms, we experimentally show that they allow significant improvements in time, in compactness of the computed policy and of the learned model. We then analyzed the combination of these two algorithms in an efficient sdyna instance for simultaneous learning and planning using mdds.

دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله شامل 16027 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 12 تومان 24 روز بعد از پرداخت 192,324 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 24 تومان 12 روز بعد از پرداخت 384,648 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.