دانلود مقاله ISI انگلیسی شماره 149824
ترجمه فارسی عنوان مقاله

بهره برداری از شبکه های باقی مانده عمیق برای به رسمیت شناختن عمل انسان از اطلاعات اسکلت

عنوان انگلیسی
Exploiting deep residual networks for human action recognition from skeletal data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی ترجمه فارسی
149824 2018 16 صفحه PDF سفارش دهید
دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله تقریباً شامل 10725 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 12 تومان 17 روز بعد از پرداخت 128,700 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 24 تومان 9 روز بعد از پرداخت 257,400 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Vision and Image Understanding, Available online 7 March 2018

پیش نمایش مقاله
پیش نمایش مقاله بهره برداری از شبکه های باقی مانده عمیق برای به رسمیت شناختن عمل انسان از اطلاعات اسکلت

چکیده انگلیسی

The computer vision community is currently focusing on solving action recognition problems in real videos, which contain thousands of samples with many challenges. In this process, Deep Convolutional Neural Networks (D-CNNs) have played a significant role in advancing the state-of-the-art in various vision-based action recognition systems. Recently, the introduction of residual connections in conjunction with a more traditional CNN model in a single architecture called Residual Network (ResNet) has shown impressive performance and great potential for image recognition tasks. In this paper, we investigate and apply deep ResNets for human action recognition using skeletal data provided by depth sensors. Firstly, the 3D coordinates of the human body joints carried in skeleton sequences are transformed into image-based representations and stored as RGB images. These color images are able to capture the spatial-temporal evolutions of 3D motions from skeleton sequences and can be efficiently learned by D-CNNs. We then propose a novel deep learning architecture based on ResNets to learn features from obtained color-based representations and classify them into action classes. The proposed method is evaluated on three challenging benchmark datasets including MSR Action 3D, KARD, and NTU-RGB+D datasets. Experimental results demonstrate that our method achieves state-of-the-art performance for all these benchmarks whilst requiring less computation resource. In particular, the proposed method surpasses previous approaches by a significant margin of 3.4% on MSR Action 3D dataset, 0.67% on KARD dataset, and 2.5% on NTU-RGB+D dataset.

دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله شامل 10725 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 12 تومان 17 روز بعد از پرداخت 128,700 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 24 تومان 9 روز بعد از پرداخت 257,400 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.