دانلود مقاله ISI انگلیسی شماره 151483
کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
151483 2017 45 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Genetic programming (GP) approach for prediction of supercritical CO2 thermal conductivity
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Chemical Engineering Research and Design, Volume 122, June 2017, Pages 164-175

پیش نمایش مقاله
پیش نمایش مقاله

چکیده انگلیسی

Gas thermal conductivity is one of the thermophysical properties that inevitably enters into mathematical models of real systems used in the design of chemical engineering processes or in the gas industry. In this study, via implementing a powerful and newly applied equation generator algorithm known as, genetic programming (GP) mathematical strategy, a novel correlation for estimation of supercritical CO2 thermal conductivity is established. The proposed correlation is developed and validated based on a comprehensive databank of 752 thermal conductivity datasets from open literature. By using various statistical quality measures, the result of the proposed GP model was compared with commonly used literature models. As a result, the proposed GP model gives the best fit and satisfactory agreement with the target data with an average absolute relative error of 2.31% and R2 = 0.997. A parametric sensitivity analysis showed that pressure and density of the CO2 gas stream have considerable impact on the thermal conductivity at supercritical condition. The results of this study can be of enormous practical worth for scientist and expertise in order to efficiently compute the thermal conductivity in any supercritical industry involving CO2.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.