دانلود مقاله ISI انگلیسی شماره 152673
کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
152673 2018 30 صفحه PDF سفارش دهید 6242 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Rolling element bearing fault diagnosis using convolutional neural network and vibration image
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Cognitive Systems Research, Available online 14 March 2018

پیش نمایش مقاله
پیش نمایش مقاله

چکیده انگلیسی

Detecting in prior bearing faults is an essential task of machine health monitoring because bearings are the vital components of rotary machines. The performance of traditional intelligent fault diagnosis methods depend on feature extraction of fault signals, which requires signal processing techniques, expert knowledge, and human labor. Recently, deep learning algorithms have been applied widely in machine health monitoring. With the capacity of automatically learning complex features of input data, deep learning architectures have great potential to overcome drawbacks of traditional intelligent fault diagnosis. This paper proposes a method for diagnosing bearing faults based on a deep structure of convolutional neural network. Using vibration signals directly as input data, the proposed method is an automatic fault diagnosis system which does not require any feature extraction techniques and achieves very high accuracy and robustness under noisy environments.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.