دانلود مقاله ISI انگلیسی شماره 157505
کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
157505 2018 38 صفحه PDF سفارش دهید 9910 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Response selection from unstructured documents for human-computer conversation systems
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 142, 15 February 2018, Pages 149-159

پیش نمایش مقاله
پیش نمایش مقاله

چکیده انگلیسی

This paper studies response selection for human-computer conversation systems. Existing retrieval-based human-computer conversation systems are intended to reply to user utterances based on existing utterance-response pairs. However, collecting sufficient utterance-response pairs is intractable in practical situations, especially for many specific domains. We introduce DocChat a novel information retrieval approach for human-computer conversation systems that can use unstructured documents rather than semi-structured utterance-response pairs, to react to user utterances. The key of DocChat is a learning to rank model with features designed at various levels of granularity which is proposed to quantify the relevance between utterances and responses directly. We conduct comprehensive experiments on both sentence selection and real human-computer conversation scenarios. Empirical studies of sentence selection datasets shows reasonable improvements and the strong adaptability of our model. We compare DocChat with Xiaoice, a famous open domain chitchat engine in China. Side-by-side evaluation shows that DocChat is a good complement for human-computer conversation systems using utterance-response pairs as the primary source of responses. Furthermore, we release a large scale open-domain dataset for sentence selection which contains 304,413 query-sentence pairs.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.