دانلود مقاله ISI انگلیسی شماره 157931
عنوان انگلیسی
Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی ترجمه فارسی
157931 2018 12 صفحه PDF سفارش دهید
دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله تقریباً شامل 9089 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 12 تومان 15 روز بعد از پرداخت 109,068 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 24 تومان 8 روز بعد از پرداخت 218,136 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : ISPRS Journal of Photogrammetry and Remote Sensing, Available online 19 February 2018

پیش نمایش مقاله
پیش نمایش مقاله

چکیده انگلیسی

In remote sensing images, the absolute orientation of objects is arbitrary. Depending on an object’s orientation and on a sensor’s flight path, objects of the same semantic class can be observed in different orientations in the same image. Equivariance to rotation, in this context understood as responding with a rotated semantic label map when subject to a rotation of the input image, is therefore a very desirable feature, in particular for high capacity models, such as Convolutional Neural Networks (CNNs). If rotation equivariance is encoded in the network, the model is confronted with a simpler task and does not need to learn specific (and redundant) weights to address rotated versions of the same object class. In this work we propose a CNN architecture called Rotation Equivariant Vector Field Network (RotEqNet) to encode rotation equivariance in the network itself. By using rotating convolutions as building blocks and passing only the values corresponding to the maximally activating orientation throughout the network in the form of orientation encoding vector fields, RotEqNet treats rotated versions of the same object with the same filter bank and therefore achieves state-of-the-art performances even when using very small architectures trained from scratch. We test RotEqNet in two challenging sub-decimeter resolution semantic labeling problems, and show that we can perform better than a standard CNN while requiring one order of magnitude less parameters.

دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله شامل 9089 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 12 تومان 15 روز بعد از پرداخت 109,068 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 24 تومان 8 روز بعد از پرداخت 218,136 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.