دانلود مقاله ISI انگلیسی شماره 24298
عنوان فارسی مقاله

# محدود مدل رگرسیون خطی برای متغیر با ارزش بازه ای نمادین

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
24298 2010 15 صفحه PDF سفارش دهید 11321 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Constrained linear regression models for symbolic interval-valued variables
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computational Statistics & Data Analysis, Volume 54, Issue 2, 1 February 2010, Pages 333–347

کلمات کلیدی
محدود مدل رگرسیون خطی - متغیر با ارزش بازه ای - نمادین -
کلمات کلیدی انگلیسی
Constrained linear regression models ,symbolic ,interval-valued variables,
پیش نمایش مقاله

#### چکیده انگلیسی

This paper introduces an approach to fitting a constrained linear regression model to interval-valued data. Each example of the learning set is described by a feature vector for which each feature value is an interval. The new approach fits a constrained linear regression model on the midpoints and range of the interval values assumed by the variables in the learning set. The prediction of the lower and upper boundaries of the interval value of the dependent variable is accomplished from its midpoint and range, which are estimated from the fitted linear regression models applied to the midpoint and range of each interval value of the independent variables. This new method shows the importance of range information in prediction performance as well as the use of inequality constraints to ensure mathematical coherence between the predicted values of the lower (View the MathML sourceyˆLi) and upper (View the MathML sourceyˆUi) boundaries of the interval. The authors also propose an expression for the goodness-of-fit measure denominated determination coefficient. The assessment of the proposed prediction method is based on the estimation of the average behavior of the root-mean-square error and square of the correlation coefficient in the framework of a Monte Carlo experiment with different data set configurations. Among other aspects, the synthetic data sets take into account the dependence, or lack thereof, between the midpoint and range of the intervals. The bias produced by the use of inequality constraints over the vector of parameters is also examined in terms of the mean-square error of the parameter estimates. Finally, the approaches proposed in this paper are applied to a real data set and performances are compared.