دانلود مقاله ISI انگلیسی شماره 25901
عنوان فارسی مقاله

تجزیه و تحلیل حساسیت برای اجزاء تغییرات یکنواخت به شدت تعمیم یافته بر اساس (A، η) (A، η)، روش اپراتور حل شده

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
25901 2006 5 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)(A,η)-resolvent operator technique
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematics Letters, Volume 19, Issue 12, December 2006, Pages 1409–1413

کلمات کلیدی
( - η)( - η)تجزیه و تحلیل حساسیت - حداکثر نقشه برداری یکنواخت آرام - ( - η) ( - η) نقشه برداری - نواخت - روش اپراتور حل عمومی -
پیش نمایش مقاله
پیش نمایش مقاله تجزیه و تحلیل حساسیت برای اجزاء تغییرات یکنواخت به شدت تعمیم یافته بر اساس (A، η) (A، η)،  روش اپراتور حل شده

چکیده انگلیسی

Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)(A,η)-resolvent operator technique is investigated. The results obtained encompass a broad range of results.

مقدمه انگلیسی

Recently in [1] the author investigated sensitivity analysis for quasivariational inclusions using the resolvent operator technique. Resolvent operator techniques have been applied to a broad range of problems arising from several fields of research, especially from model equilibria problems in economics, optimization and control theory, operations research, transportation network modeling, and mathematical programming. In this work we present the sensitivity analysis for (A,η)(A,η)-monotone quasivariational inclusions based on the generalized (A,η)(A,η)-resolvent operator technique. The notion of (A,η)(A,η)-monotone mappings upgrades the notion of AA-monotonicity [2], which generalizes the well-known class of maximal monotone mappings to maximal relaxed monotone mappings. The results obtained generalize a wide range of results on the sensitivity analysis for quasivariational inclusions [3], [4], [5] and [6] and others. For more details, we recommend [1], [2], [3], [4], [5], [6], [7] and [8].

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.