دانلود مقاله ISI انگلیسی شماره 42786
عنوان فارسی مقاله

یک تصمیم سیستم پشتیبانی مبتنی بر تلفن همراه هوشمند برای تشخیص بیماری های شبکیه

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
42786 2014 10 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
An intelligent mobile based decision support system for retinal disease diagnosis
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Decision Support Systems, Volume 59, March 2014, Pages 341–350

کلمات کلیدی
بیماری شبکیه - شبکه های عصبی - برنامه های کاربردی تلفن همراه برای محیط آندروید - تجزیه و تحلیل تصویر شبکیه - روش ریشه
پیش نمایش مقاله
پیش نمایش مقاله یک تصمیم سیستم پشتیبانی مبتنی بر تلفن همراه هوشمند برای تشخیص بیماری های شبکیه

چکیده انگلیسی

Diabetes and Cataract are the key causes of retinal blindness for millions of people. Current detection of diabetes and Cataract from retinal images using Fundus camera is expensive and inconvenient since such detection is not portable and requires specialists to perform an operation. This paper presents an innovative development of a low cost Smartphone based intelligent system integrated with microscopic lens that allows patients in remote and isolated areas for regular eye examinations and disease diagnosis. This mobile diagnosis system uses an artificial Neural Network algorithm to analyze the retinal images captured by the microscopic lens to identify retinal disease conditions. The algorithm is first of all trained with infected and normal retinal images using a personal computer and then further developed into a mobile-based diagnosis application for Android environments. The application is optimized by using the rooted method in order to increase battery lifetime and processing capacity. A duty cycle method is also proposed to greatly improve the energy efficiency of this retinal scan and diagnosis system in Smartphone environments. The proposed mobile-based system is tested and verified using two well-known medical ophthalmology databases to demonstrate its merits and capabilities. The evaluation results indicate that the system shows competitive retinal disease detection accuracy rates (> 87%). It also offers early detection of retinal diseases and shows great potential to be further developed to identify skin cancer.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.