دانلود مقاله ISI انگلیسی شماره 46045
عنوان فارسی مقاله

مدل پیش بینی عملکرد نهایی دانش آموز بر اساس مشارکت از طریق برنامه نویسی ژنتیک قابل تفسیر: ادغام تجزیه و تحلیل آموزش، داده کاوی آموزشی و نظریه

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
46045 2015 14 صفحه PDF سفارش دهید 10260 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers in Human Behavior, Volume 47, June 2015, Pages 168–181

کلمات کلیدی
تجزیه و تحلیل یادگیری - داده کاوی آموزشی - پیش بینی - CSCL - تئوری فعالیت - برنامه نویسی ژنتیک
پیش نمایش مقاله
پیش نمایش مقاله مدل پیش بینی عملکرد نهایی دانش آموز بر اساس مشارکت از طریق برنامه نویسی ژنتیک قابل تفسیر: ادغام تجزیه و تحلیل آموزش، داده کاوی آموزشی و نظریه

چکیده انگلیسی

Building a student performance prediction model that is both practical and understandable for users is a challenging task fraught with confounding factors to collect and measure. Most current prediction models are difficult for teachers to interpret. This poses significant problems for model use (e.g. personalizing education and intervention) as well as model evaluation. In this paper, we synthesize learning analytics approaches, educational data mining (EDM) and HCI theory to explore the development of more usable prediction models and prediction model representations using data from a collaborative geometry problem solving environment: Virtual Math Teams with Geogebra (VMTwG). First, based on theory proposed by Hrastinski (2009) establishing online learning as online participation, we operationalized activity theory to holistically quantify students’ participation in the CSCL (Computer-supported Collaborative Learning) course. As a result, 6 variables, Subject, Rules, Tools, Division of Labor, Community, and Object, are constructed. This analysis of variables prior to the application of a model distinguishes our approach from prior approaches (feature selection, Ad-hoc guesswork etc.). The approach described diminishes data dimensionality and systematically contextualizes data in a semantic background. Secondly, an advanced modeling technique, Genetic Programming (GP), underlies the developed prediction model. We demonstrate how connecting the structure of VMTwG trace data to a theoretical framework and processing that data using the GP algorithmic approach outperforms traditional models in prediction rate and interpretability. Theoretical and practical implications are then discussed.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.