دانلود مقاله ISI انگلیسی شماره 46315
عنوان فارسی مقاله

طبقه بندی داده های پزشکی با استفاده از سیستم منطق فازی نوع دو فاصله ای و ریز موج

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
46315 2015 11 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Medical data classification using interval type-2 fuzzy logic system and wavelets
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 30, May 2015, Pages 812–822

کلمات کلیدی
سیستم منطق فازی نوع دو فاصله ای - تبدیل موجک - الگوریتم ژنتیک - طبقه بندی داده های پزشکی - سرطان پستان - بیماری قلبی
پیش نمایش مقاله
پیش نمایش مقاله طبقه بندی داده های پزشکی با استفاده از سیستم منطق فازی نوع دو فاصله ای و ریز موج

چکیده انگلیسی

This paper introduces an automated medical data classification method using wavelet transformation (WT) and interval type-2 fuzzy logic system (IT2FLS). Wavelet coefficients, which serve as inputs to the IT2FLS, are a compact form of original data but they exhibits highly discriminative features. The integration between WT and IT2FLS aims to cope with both high-dimensional data challenge and uncertainty. IT2FLS utilizes a hybrid learning process comprising unsupervised structure learning by the fuzzy c-means (FCM) clustering and supervised parameter tuning by genetic algorithm. This learning process is computationally expensive, especially when employed with high-dimensional data. The application of WT therefore reduces computational burden and enhances performance of IT2FLS. Experiments are implemented with two frequently used medical datasets from the UCI Repository for machine learning: the Wisconsin breast cancer and Cleveland heart disease. A number of important metrics are computed to measure the performance of the classification. They consist of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. Results demonstrate a significant dominance of the wavelet–IT2FLS approach compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus useful as a decision support system for clinicians and practitioners in the medical practice.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.