دانلود مقاله ISI انگلیسی شماره 46596
عنوان فارسی مقاله

نقشه برداری ماهواره ای از عمق دریای بالتیک سکچی با مدل های رگرسیون چندگانه

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
46596 2015 10 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Satellite mapping of Baltic Sea Secchi depth with multiple regression models
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Applied Earth Observation and Geoinformation, Volume 40, August 2015, Pages 55–64

کلمات کلیدی
تعمیم مدل خطی - تعمیم مدل جمعی - ریشه میانگین مربعات خطا - میانگین خطای مطلق - متوسط نرمال - عمق سکچی - نقشه برداری - رگرسیون -
پیش نمایش مقاله
پیش نمایش مقاله نقشه برداری ماهواره ای از عمق دریای بالتیک سکچی با مدل های رگرسیون چندگانه

چکیده انگلیسی

Secchi depth is a measure of water transparency. In the Baltic Sea region, Secchi depth maps are used to assess eutrophication and as input for habitat models. Due to their spatial and temporal coverage, satellite data would be the most suitable data source for such maps. But the Baltic Sea’s optical properties are so different from the open ocean that globally calibrated standard models suffer from large errors. Regional predictive models that take the Baltic Sea’s special optical properties into account are thus needed. This paper tests how accurately generalized linear models (GLMs) and generalized additive models (GAMs) with MODIS/Aqua and auxiliary data as inputs can predict Secchi depth at a regional scale. It uses cross-validation to test the prediction accuracy of hundreds of GAMs and GLMs with up to 5 input variables. A GAM with 3 input variables (chlorophyll a, remote sensing reflectance at 678 nm, and long-term mean salinity) made the most accurate predictions. Tested against field observations not used for model selection and calibration, the best model’s mean absolute error (MAE) for daily predictions was 1.07 m (22%), more than 50% lower than for other publicly available Baltic Sea Secchi depth maps. The MAE for predicting monthly averages was 0.86 m (15%). Thus, the proposed model selection process was able to find a regional model with good prediction accuracy. It could be useful to find predictive models for environmental variables other than Secchi depth, using data from other satellite sensors, and for other regions where non-standard remote sensing models are needed for prediction and mapping. Annual and monthly mean Secchi depth maps for 2003–2012 come with this paper as Supplementary materials.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.