دانلود مقاله ISI انگلیسی شماره 46642
عنوان فارسی مقاله

عملکرد مدل های پیش بینی بحران مالی شرکت ها با انتخاب ویژگی های دامنه دانش و روش های داده کاوی

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
46642 2015 10 صفحه PDF سفارش دهید 8330 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 85, September 2015, Pages 52–61

کلمات کلیدی
پیش بینی بحران مالی - ویژگی های انتخاب - دامنه دانش - داده کاوی
پیش نمایش مقاله
پیش نمایش مقاله عملکرد مدل های پیش بینی بحران مالی شرکت ها با انتخاب ویژگی های دامنه دانش و روش های داده کاوی

چکیده انگلیسی

Experts in finance and accounting select feature subset for corporate financial distress prediction according to their professional understanding of the characteristics of the features, while researchers in data mining often believe that data alone can tell everything and they use various mining techniques to search the feature subset without considering the financial and accounting meanings of the features. This paper investigates the performance of different financial distress prediction models with features selection approaches based on domain knowledge or data mining techniques. The empirical results show that there is no significant difference between the best classification performance of models with features selection guided by data mining techniques and that by domain knowledge. However, the combination of domain knowledge and genetic algorithm based features selection method can outperform unique domain knowledge and unique data mining based features selection method on AUC performance.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.