دانلود مقاله ISI انگلیسی شماره 46721
عنوان فارسی مقاله

کاهش تنگنای داده کاوی مبتنی بر گراف با بهبود بهره وری آزمایش ایزومورفیزم نمودار برچسب دار

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
46721 2014 17 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Reducing the bottleneck of graph-based data mining by improving the efficiency of labeled graph isomorphism testing
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Data & Knowledge Engineering, Volume 91, May 2014, Pages 17–33

کلمات کلیدی
داده کاوی - روش استخراج و الگوریتم - آزمایش ایزومورفیزم - امضای نمودار - جستجوی درخت فضای حالت
پیش نمایش مقاله
پیش نمایش مقاله کاهش تنگنای داده کاوی مبتنی بر گراف با بهبود بهره وری آزمایش ایزومورفیزم نمودار برچسب دار

چکیده انگلیسی

Due to the complex nature of graph representations, the isomorphism testing between a pair of labeled graphs becomes one of the most time-consuming procedures during the process of graph-based data mining. In order to reduce this bottleneck, in this paper we propose a novel efficient algorithm to perform isomorphism testing of labeled graphs which in general performs less state-space tree searching. The proposed method uses graph signatures as the first-step filter, and it limits the backtracking occurring only between each pair of corresponding vertex classes, based on the proposed data structures and the vertex partition method. We compared the proposed method with state-of-the-art methods to verify its efficiency for several datasets each with different aspects of characteristics. The experimental results show that for irregular graphs, either labeled or unlabeled, the proposed method outperforms the compared methods in efficiency. For graphs with multiple labels but high regularity, the proposed method is still better than the compared methods. The result of this algorithm is directly applicable to those emerging applications related to graph-based data mining which need to perform isomorphism testing of labeled graphs in large databases.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.