دانلود مقاله ISI انگلیسی شماره 46777
عنوان فارسی مقاله

بهینه سازی پیکربندی پلت فرم با تغییر نسلی

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
46777 2015 11 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Optimization of a platform configuration with generational changes
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Production Economics, Volume 169, November 2015, Pages 299–309

کلمات کلیدی
سکو - شاخص انواع نسل - محاسبه DNA شبیه سازی شده - الگوریتم ژنتیک
پیش نمایش مقاله
پیش نمایش مقاله بهینه سازی پیکربندی پلت فرم با تغییر نسلی

چکیده انگلیسی

Platform is an established strategy for producing customized products while managing the economy of scale. Innovation in various areas makes different components in a platform outdated or redundant within a short span of time. This poses severe challenge to the robustness of the platform configuration that efficiently satisfies the volatile needs of the customers from various segments. Therefore, deciding the platform configuration that can adequately accommodate generational changes in the product design is emerging as a new challenge. This paper deals with optimization of a platform configuration through a couple of product generations. For this, specifications from different customers and their probable attribute changes are mapped to product׳s utility, which signifies importance of each component through a period of time. Utility by cost ratio for different products forms the basic variable for optimizing the configuration of a platform. An illustrative example is detailed to demonstrate the methodology adopted in exploring the optimal platform configuration. This paper incorporates an intelligent DNA-based technique to reach the optimal configuration. The results of simulated DNA computation are compared with that of genetic algorithm (GA). The results show significant improvement in the number of objective function evaluations before reaching the optimal result, against that of GA thus establishing its superiority in numerical optimization.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.