دانلود مقاله ISI انگلیسی شماره 46782
عنوان فارسی مقاله

رویکرد تکاملی جدید برای تشخیص سنبله عصبی مبتنی بر الگوریتم ژنتیک

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
46782 2015 6 صفحه PDF سفارش دهید 3880 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
A new evolutionary approach for neural spike detection based on genetic algorithm
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 42, Issue 1, January 2015, Pages 462–467

کلمات کلیدی
تشخیص سنبله عصبی - NEO - الگوریتم ژنتیک - سیگنال های عصبی
پیش نمایش مقاله
پیش نمایش مقاله رویکرد تکاملی جدید برای تشخیص سنبله عصبی مبتنی بر الگوریتم ژنتیک

چکیده انگلیسی

Identification of the epileptic features in nervous signals is one of the main goals of neuroscientists and biomedical engineers since it provides valuable information about the current and future health status of a patient. Implantable wireless neural signal recording is a powerful, newly emerging technique that has been suggested for neural signal tracking and recording. One of the main issues with this technique is the transmission of enormous amounts of data, which requires high bandwidth and high power consumption for the implanted device. Neural spike detection and spike sorting can be used to reduce the power consumption and the amount of data transmitted. Neural spike detection is a challenging technique because of the large amount of background noise that exists in the body known as low potential field signals (LPF). Existing signal processing methods make use of amplitude thresholding and artificial neural networks to recognize spike signals, but are very vulnerable to noise and require a large amount of pre-training before being useful. Nonlinear energy operators (NEO) are also used to filter spike signals from this background noise. This method requires precise selection of a particular coefficient that is currently chosen by human intervention, which is time consuming and open to human error. In this work a novel approach utilizing a genetic algorithm (GA) based on a nonlinear energy operator (NEO) is proposed. The proposed expert system uses a GA to automatically adjust the threshold level in the NEO technique to detect the spike within a noisy signal in real time. The method is able to recognize the number and the location of spike-events in a neural signal in real time. Preliminary simulations show that the genetic algorithm gives superior results to the manual selection method, and that the improvement is more pronounced in noisier signals.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.