دانلود مقاله ISI انگلیسی شماره 52391
عنوان فارسی مقاله

هوش مصنوعی برای نظارت و کنترل نظارتی سیستم های فرآیندی

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
52391 2007 17 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Artificial intelligence for monitoring and supervisory control of process systems
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 20, Issue 2, March 2007, Pages 115–131

کلمات کلیدی
نظارت و کنترل - تکنیک های هوش مصنوعی - چارچوبی برای توسعه سیستم هوشمند؛ صنعت پردازش - سیستم های یکپارچه
پیش نمایش مقاله
پیش نمایش مقاله هوش مصنوعی برای نظارت و کنترل نظارتی سیستم های فرآیندی

چکیده انگلیسی

Complex processes involve many process variables, and operators faced with the tasks of monitoring, control, and diagnosis of these processes often find it difficult to effectively monitor the process data, analyse current states, detect and diagnose process anomalies, or take appropriate actions to control the processes. The complexity can be rendered more manageable provided important underlying trends or events can be identified based on the operational data (Rengaswamy and Venkatasubramanian, 1992. An Integrated Framework for Process Monitoring, Diagnosis, and Control Using Knowledge-based Systems and Neural Networks. IFAC, Delaware, USA, pp. 49–54.). To assist plant operators, decision support systems that incorporate artificial intelligence (AI) and non-AI technologies have been adopted for the tasks of monitoring, control, and diagnosis. The support systems can be implemented based on the data-driven, analytical, and knowledge-based approach (Chiang et al., 2001. Fault Detection and Diagnosis in Industrial Systems. Springer, London, Great Britain). This paper presents a literature survey on intelligent systems for monitoring, control, and diagnosis of process systems. The main objectives of the survey are first, to introduce the data-driven, analytical, and knowledge-based approaches for developing solutions in intelligent support systems, and secondly, to present research efforts of four research groups that have done extensive work in integrating the three solutions approaches in building intelligent systems for monitoring, control and diagnosis. The four main research groups include the Laboratory of Intelligent Systems in Process Engineering (LISPE) at Massachusetts Institute of Technology, the Laboratory for Intelligent Process Systems (LIPS) at Purdue University, the Intelligent Engineering Laboratory (IEL) at the University of Alberta, and the Department of Chemical Engineering at University of Leeds. The paper also gives some comparison of the integrated approaches, and suggests their strengths and weaknesses.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.