دانلود مقاله ISI انگلیسی شماره 52547
عنوان فارسی مقاله

یک روش شبکه عصبی مصنوعی برای مدل سازی فضای بخش در یک واحد پزشکی

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
52547 2015 15 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
An artificial neural network approach for modeling the ward atmosphere in a medical unit
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Mathematics and Computers in Simulation, Volume 116, October 2015, Pages 44–58

کلمات کلیدی
شبکه های عصبی مصنوعی - مدل سازی ریاضی - فضای بخش - کیفیت مراقبت های بهداشتی - سیستم های پیچیده
پیش نمایش مقاله
پیش نمایش مقاله یک روش شبکه عصبی مصنوعی برای مدل سازی فضای بخش در یک واحد پزشکی

چکیده انگلیسی

Artificial neural networks (ANNs) have been developed, implemented and tested on the basis of a four-year-long experimental data set, with the aim of analyzing the performance and clinical outcome of an existing medical ward, and predicting the effects that possible readjustments and/or interventions on the structure may produce on it. Advantages of the ANN technique over more traditional mathematical models are twofold: on one hand, this approach deals quite naturally with a large number of parameters/variables, and also allows to identify those variables which do not play a crucial role in the system dynamics; on the other hand, the implemented ANN can be more easily used by a staff of non-mathematicians in the unit, as an on-site predictive tool. As such, the ANN model is particularly suitable for the case study. The predictions from the ANN technique are then compared and contrasted with those obtained from a generalized kinetic approach previously proposed and tested by the authors. The comparison on the two case periods shows the ANN predictions to be somewhat closer to the experimental values. However, the mean deviations and the analysis of the statistical coefficients over a span of multiple years suggest the kinetic model to be more reliable in the long run, i.e., its predictions can be considered as acceptable even on periods that are quite far away from the two case periods over which the many parameters of the model had been optimized. The approach under study, referring to paradigms and methods of physical and mathematical models integrated with psychosocial sciences, has good chances of gaining the attention of the scientific community in both areas, and hence of eventually obtaining wider diffusion and generalization.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.