دانلود مقاله ISI انگلیسی شماره 52618
عنوان فارسی مقاله

توسعه یک سیستم خبره استخراج استفاده از زمین از طریق تجزیه و تحلیل مورفولوژیک و آرایش فضایی

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
52618 2015 15 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Development of a land use extraction expert system through morphological and spatial arrangement analysis
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 37, January 2015, Pages 221–235

کلمات کلیدی
استخراج استفاده از زمین - ساختار استفاده از زمین - تجزیه و تحلیل مورفولوژیک - تجزیه و تحلیل آرایش فضایی - سنجش از دور
پیش نمایش مقاله
پیش نمایش مقاله توسعه یک سیستم خبره استخراج استفاده از زمین از طریق تجزیه و تحلیل مورفولوژیک و آرایش فضایی

چکیده انگلیسی

Land use (LU) information is of significant value for various urban studies and is needed for a wide variety of decision-making initiatives in the range of global, regional and urban areas. A challenge that researchers and practitioners have been facing in urban modeling/planning is the lack of detailed information regarding how cities are structured and how urban development evolves. This study aims to develop a hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information. The LU extraction system, which considers both morphological and spatial arrangement analyses at a fine spatial level – parcel, is developed to understand association/correlation rules between different urban features and their corresponding LU structures. In this study, structures and patterns of residential and commercial LUs are scrutinized. Residential and commercial LUs are first extracted by examining the morphological properties of individual parcels using a stepwise binary logistic models, which results in an overall accuracy of 97.5% and 92.4% respectively. A spatial arrangement analysis is then carried out through Gabriel Graph to identify structural patterns of residential and commercial parcels in order to cluster and separate them from other LUs. Extracting residential and commercial clusters helps to correct misclassifications arising from morphological analysis. The post-correction process results in improving the overall LU extraction accuracy by 1.6% for residential and 4.8% for commercial LU. The above exercises show that the LU classification framework developed can classify and then divide large zones with mixed LUs into single-LU subzones with a high accuracy.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.