دانلود مقاله ISI انگلیسی شماره 53057
عنوان فارسی مقاله

مقایسه شبکه عصبی مصنوعی و سنسور توسعه یافته فیلتر کالمن بر اساس تخمین سرعت

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
53057 2015 7 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
A comparison of artificial neural network and extended Kalman filter based sensorless speed estimation
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Measurement, Volume 63, March 2015, Pages 152–158

کلمات کلیدی
تخمین سرعت - شبکه های عصبی؛ کنترل بدون سنسور - برآورد مبتنی بر مدل
پیش نمایش مقاله
پیش نمایش مقاله مقایسه شبکه عصبی مصنوعی و سنسور توسعه یافته فیلتر کالمن بر اساس تخمین سرعت

چکیده انگلیسی

In industry speed estimation is one of the most important issue for monitoring and controlling systems. These kind of processes require costly measurement equipment. This issue can be eliminated by designing a sensorless system. In this paper we present a sensorless algorithm to estimate shaft speed of a dc motor for closed-loop control using an Artificial Neural Network (ANN). The method is based on the use of ANN to obtain a convenient correction for improving the calculated model speed. Three architectures of ANNs are developed and performance evaluations of the networks are performed by three performance criteria. After the evaluations, Levenberg–Marquardt backpropagation algorithm is chosen as learning algorithm due to its good performance. The speed estimation performance of developed ANN was compared with Extended Kalman Filter (EKF) under the same conditions. The results indicates that the proposed ANN shows better performance than the EKF. And ANN model can be used for speed estimation with reasonable accuracy.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.