دانلود مقاله ISI انگلیسی شماره 70459 + ترجمه فارسی
عنوان فارسی مقاله

طراحی الگوریتم تشخیص چهره با استفاده از PCA-LDA ترکیب شده برای پیش پردازش داده های ترکیبی و شبکه های عصبی RBF مبتنی بر چند جمله ای: طراحی و کاربرد آن

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی
70459 2013 16 صفحه PDF 39 صفحه WORD
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Design of face recognition algorithm using PCA -LDA combined for hybrid data pre-processing and polynomial-based RBF neural networks : Design and its application
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 40, Issue 5, April 2013, Pages 1451–1466

فهرست مطالب ترجمه فارسی
خلاصه
کلید واژه ها
 1  مقدمه
 2 پیش پردازش داده برای استخراج ویژگی های صورت
2.1آنالیز عناصر اصلی
شکل 1. صورت میانگین .
شکل2. Eigenface
شکل 3. ساختار کلی شبکه های عصبی RBF
شکل 4. توپولوژی P-RBF NNs که نشان دهنده ی سه ماژول عملی از شرط، نتیجه گیری و فاز تجمیع است.
2.2. آنالیز تفکیک خطی
شکل 5. شکل تابع عضویت شکل گرفته توسط الگوریتم FCM برای مقادیر انتخاب شده ی ضریب فازی سازی: (a)  m = 1.1، (b) m = 2.0، (c) m = 3.0، (d) m = 4.0.
شکل6. ساخت بردارهای پارامترها
شکل 7. ساختار بردارهای پارامتر برای بهینه سازی P-RBF NNs
2.3. ترکیب PCA  و LDA
شکل8. نمونه های تصاویر صورت در دیتابیس صورت Yale
شکل 9. نمونه های تصاویر صورت در دیتابیس AT&T
جدول 1. توصیف دیتابیس تصاویر صورت استفاده شده برای آزمایشات
جدول 2. پارامترهای DE برای بهینه سازی P-RBF NNs
جدول 3. سایز تصویر و تقسیم دیتاست صورت Yale
جدول 4. کارآیی طبقه بندی روی دیتاست صورت Yale با استفاده از روش PCA
جدول 5. کارآیی طبقه بندی روی دیتاست صورت Yale با استفاده از روشPCA-LDA 
جدول 6. مقایسه ی نرخ شناسایی میانگین برای چندین مدل روی دیتاست صورت Yale
شکل10. مقایسه ی نرخ طبقه بندی با توجه به روش های استخراج ویژگی متفاوت (چند جمله ای: خطی): (a) داده های آموزشی (b)داده های اعتبارسنجی (c) داده های تست
  3 شبکه های تابع پایه ی شعاعی مبتنی بر چند جمله ای: یک توپولوژی عمومی
3.1. ساختار شبکه های RBF مبتنی بر چندجمله ای
شکل11. مقایسه ی نرخ طبقه بندی با توجه به روش های استخراج ویژگی متفاوت (نوع چندجمله ای: خطی): (a) داده های آموزشی (b) داده های اعتبارسنجی (c) داده های تست
جدول7. سایز تصویر و تقسیم دیتاست AT&T
3.2. سه فاز پردازشی شبکه های عصبی RBF مبتنی بر چندجمله ای
3.2.1. فاز شرط شبکه ها
جدول 8. کارآیی خوشه بندی روی AT&T با استفاده از روش PCA
جدول 9. کارآیی خوشه بندی روی دیتاست AT&T با استفاده از روش ترکیبی PCA-LDA
جدول 10. مقایسه ی نرخ شناسایی میانگین برای چندین مدل روی دیتاست AT&T
3.2.2. بخش نتیجه گیری شبکه
شکل12. فرآیند کلی محقق شده در سیستم تشخیص صورت
3.2.3 فاز تجمیع شبکه ها
  4 طبقه بندی کننده های شبکه های تابع پایه شعاعی مبتنی بر چندجمله ای و آموزش آن با استفاده از روش گرادیان کاهشی
4.1. تابع تفیک
شکل 13. پردازش جزئیات محقق شده در سیستم
4.2. یادگیری P-RBF NNs با استفاده از روش گرادیان کاهشی
شکل 14. پرازش استخراج حوزه ی صورت
شکل 15. تصاویر نمونه ی استفاده شده در سیستم
شکل 16. پنجره ی ثبت
شکل 17. تنظیم ماژول برای آموزش
  5 بهینه سازی پارامترهای P-RBF NNs با هدف تکامل تفاضلی
5.1. تکامل تفاضلی (DE)
شکل 18. ماژول شناسایی صورت
جدول 11. مقایسه ی نتایج نرخ شناسایی بی درنگ دو الگوریتم (نوع چندجمله ای: خطی)
5.1.1. مقداردهی اولیه
5.1.2. جهش
5.1.3. تقاطع
5.1.4. انتخاب
5.1.5 محدودیت های مرزی
5.2. ساختار بردارها در P-RBF NNs
  6 مطالعات آزمایشاتی
6.1. طراحی آزمایشاتی
6.2. دیتابیس صورت Yale
6.3. دیتابیس AT&T
6.4.کاربرد در سیستم شناسایی صورت بلادرنگ
  7. نتیجه گیری
کلمات کلیدی
PCA، تجزیه و تحلیل مولفه اصلی، LDA، تجزیه و تحلیل خطی جدایی، P-RBF NNs، مبتنی بر چند هسته ای مبتنی بر شعاع، عملکرد شبکه های عصبی، FCM، فازی C-Means، DE، difluent evoluti
کلمات کلیدی انگلیسی
PCA, principal component analysis; LDA, linear discriminant analysis; P-RBF NNs, polynomial-based radial basis function neural networks; FCM, Fuzzy C-Means; DE, differential evolution
ترجمه چکیده
در این مطالعه، شبکه های عصبی تابع پایه ی شعاعی (RBF) مبتنی بر چند جمله ای بعنوان یکی از عناصر عملی سیستم تشخیص چهره پیشنهاد شده اند. این سیستم شامل ماژول پیش پردازش و تشخیص می باشد. متدولوژی طراحی و پروسه های منتج شده از P-RBF NNs ارائه شده اند. این ساختار در ساخت یک راه حل برای مساله های شناسایی چهره ی بالا بعدی کمک می کند. در بخش پیش پردازش داده ها، تحلیل مولفه های اصلی (PCA) در شناسایی چهره بکار گرفته می شود. این راه حل برای کاهش ابعاد فضای ویژگی نیز مفید می باشد. با این حال به دلیل این که با تصویر کلی صورت سروکار دارد، نمی تواند تضمین کند که نرخ طبقه بندی در هنگام تغییر نقاط دید یکسان است. برای جبران این محدودیت ها، آنالیز تفکیک خطی (LDA) برای بهبود جدایی بین دو کلاس استفاده می شود. در این مقاله، ما روی الگوریتم PCA-LDA و طراحی یک P-RBF NNs برای ماژول تشخیص کار می کنیم. ساختار P-RBF NNs پیشنهاد شده شامل سه ماژول عملی است به طوری که بخش شرط، بخش نتیجه و بخش استنتاج با عبارات فازی قوانین "if-then" تشخیص داده می شوند. در بخش شرط قوانین فازی، فضای ورودی با استفاده از خوشه بندی فازی تشخیص داده شده با ابزارهای الگوریتم FCM افراز می شود. در بخش نتیجه ی قوانین، وزن ارتباط از طریق سه نوع چند جمله ای تشخیص داده می شود، مانند خطی، ثابت و درجه ی دوم. ضریب های مدل P-RBF NNs توسط روش استنتاج فازی، قوانین فازی بخش استنتاج را شکل می دهند. پارامترهای طراحی اساسی (از جمله نرخ یادگیری، حرکت، ضریب فازی سازی و مکانیزم انتخاب ویژگی) شبکه توسط ابزارهای تکامل تفاضلی (DE) بهینه سازی می شوند. نتایج آزمایشاتی که روی دیتاست های صورت انجام گرفته است- AT&T، و دیتاست Yale نشان دهنده ی کارآمدی و تاثیر الگوریتم PCA-LDA ترکیب شده در مقایسه با PCA، LPP، 2D-PCA و 2DLPP می باشد.یک سیستم تشخیص چهره ی بی درنگ نیز که به این صورت محقق شده است نیز در این مقاله ارائه شده است.
پیش نمایش مقاله
پیش نمایش مقاله طراحی الگوریتم تشخیص چهره با استفاده از PCA-LDA ترکیب شده برای پیش پردازش داده های ترکیبی و شبکه های عصبی RBF مبتنی بر چند جمله ای: طراحی و کاربرد آن

چکیده انگلیسی

In this study, polynomial-based radial basis function neural networks are proposed as one of the functional components of the overall face recognition system. The system consists of the preprocessing and recognition module. The design methodology and resulting procedure of the proposed P-RBF NNs are presented. The structure helps construct a solution to high-dimensional pattern recognition problems. In data preprocessing part, principal component analysis (PCA) is generally used in face recognition. It is useful in reducing the dimensionality of the feature space. However, because it is concerned with the overall face image, it cannot guarantee the same classification rate when changing viewpoints. To compensate for these limitations, linear discriminant analysis (LDA) is used to enhance the separation between different classes. In this paper, we elaborate on the PCA-LDA algorithm and design an optimal P-RBF NNs for the recognition module.The proposed P-RBF NNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part realized in terms of fuzzy “if–then” rules. In the condition part of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means (FCM) algorithm. In the conclusion part of rules, the connection weight is realized through three types of polynomials such as constant, linear, and quadratic. The coefficients of the P-RBF NNs model are obtained by fuzzy inference method forming the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum, fuzzification coefficient, and the feature selection mechanism) of the networks are optimized by means of differential evolution (DE). The experimental results completed on benchmark face datasets – the AT&T, and Yale datasets demonstrate the effectiveness and efficiency of PCA-LDA combined algorithm compared with other algorithms such as PCA, LPP, 2D-PCA and 2D-LPP. A real time face recognition system realized in this way is also presented.► The proposed system consists of the preprocessing and recognition module. ► The design methodology and resulting procedure of the proposed P-RBF NNs are presented. ► We elaborate on the PCA-LDA algorithm and design an optimal P-RBF NNs for the recognition module. ► A real time face recognition system realized by the proposed method is presented.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.