دانلود مقاله ISI انگلیسی شماره 76891
عنوان فارسی مقاله

الگوریتم انتخاب منفی با آشکارسازهای ثابت برای تشخیص ناهنجاری

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
76891 2015 15 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Negative selection algorithm with constant detectors for anomaly detection
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 36, November 2015, Pages 618–632

کلمات کلیدی
سیستم ایمنی مصنوعی؛ الگوریتم انتخاب منفی؛ تشخیص ناهنجاری؛ وضع
پیش نمایش مقاله
پیش نمایش مقاله الگوریتم انتخاب منفی با آشکارسازهای ثابت برای تشخیص ناهنجاری

چکیده انگلیسی

In the paper, two novel negative selection algorithms (NSAs) were proposed: FB-NSA and FFB-NSA. FB-NSA has two types of detectors: constant-sized detector (CFB-NSA) and variable-sized detector (VFB-NSA). The detectors of traditional NSA are generated randomly. Even for the same training samples, the position, size, and quantity of the detectors generated in each time are different. In order to eliminate the effect of training times on detectors, in the proposed approaches, detectors are generated in non-random ways. To determine the performances of the approaches, the experiments on 2-dimensional synthetic datasets, Iris dataset and ball bearing fault data were performed. Results show that FB-NSA and FFB-NSA outperforms the other anomaly detection methods in most cases. Besides, CFB-NSA can detect the abnormal degree of mechanical equipment. To determine the performances of CFB-NSA, the experiments on ball bearing fault data were performed. Results show that the abnormal degree based on the CFB-NSA can be used to diagnose the different fault types with the same fault degree, and the same fault type with the different fault degree.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.