دانلود مقاله ISI انگلیسی شماره 78792
عنوان فارسی مقاله

الگوریتم تکاملی Cascaded برای شناسایی سیستم های غیر خطی بر اساس شبکه های عصبی توابع همبستگی و توابع پایه شعاعی

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
78792 2016 16 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Cascaded evolutionary algorithm for nonlinear system identification based on correlation functions and radial basis functions neural networks
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Mechanical Systems and Signal Processing, Volumes 68–69, February 2016, Pages 378–393

کلمات کلیدی
شناسایی سیستم؛ سیستمهای غیر خطی؛ Magnetorheological damper؛ آزمون همبستگی؛ انتخاب ورودی؛ الگوریتم های تکاملی
پیش نمایش مقاله
پیش نمایش مقاله الگوریتم تکاملی Cascaded برای شناسایی سیستم های غیر خطی بر اساس شبکه های عصبی توابع همبستگی و توابع پایه شعاعی

چکیده انگلیسی

The present work introduces a procedure for input selection and parameter estimation for system identification based on Radial Basis Functions Neural Networks (RBFNNs) models with an improved objective function based on the residuals and its correlation function coefficients. We show the results when the proposed methodology is applied to model a magnetorheological damper, with real acquired data, and other two well-known benchmarks. The canonical genetic and differential evolution algorithms are used in cascade to decompose the problem of defining the lags taken as the inputs of the model and its related parameters based on the simultaneous minimization of the residuals and higher orders correlation functions. The inner layer of the cascaded approach is composed of a population which represents the lags on the inputs and outputs of the system and an outer layer represents the corresponding parameters of the RBFNN. The approach is able to define both the inputs of the model and its parameters. This is interesting as it frees the designer of manual procedures, which are time consuming and prone to error, usually done to define the model inputs. We compare the proposed methodology with other works found in the literature, showing overall better results for the cascaded approach.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.