دانلود مقاله ISI انگلیسی شماره 78913
عنوان فارسی مقاله

انتخاب توربین بادی برای طرح مزرعه بادی با استفاده از الگوریتم های تکاملی چند هدفه

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
78913 2014 11 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Wind turbine selection for wind farm layout using multi-objective evolutionary algorithms
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 41, Issue 15, 1 November 2014, Pages 6585–6595

کلمات کلیدی
چند هدفه؛ الگوریتم تکاملی؛ انرژی باد؛ بهينه سازي؛ توربین بادی؛ انرژی تجدید پذیر
پیش نمایش مقاله
پیش نمایش مقاله انتخاب توربین بادی برای طرح مزرعه بادی با استفاده از الگوریتم های تکاملی چند هدفه

چکیده انگلیسی

Wind energy has become the world’s fastest growing energy source. Although wind farm layout is a well known problem, its solution used to be heuristic, mainly based on the designer experience. A key in search trend is to increase power production capacity over time. Furthermore the production of wind energy often involves uncertainties due to the stochastic nature of wind speeds. The addressed problem contains a novel aspect with respect of other wind turbine selection problems in the context of wind farm design. The problem requires selecting two different wind turbine models (from a list of 26 items available) to minimize the standard deviation of the energy produced throughout the day while maximizing the total energy produced by the wind farm. The novelty of this new approach is based on the fact that wind farms are usually built using a single model of wind turbine. This paper describes the usage of multi-objective evolutionary algorithms (MOEAs) in the context of power energy production, selecting a combination of two different models of wind turbine along with wind speeds distributed over different time spans of the day. Several MOEAs variants belonging to the most renowned and widely used algorithms such as SPEA2 NSGAII, PESA and msPEA have been investigated, tested and compared based on the data gathered from Cancun (Mexico) throughout the year of 2008. We have demonstrated the powerful of MOEAs applied to wind turbine selection problem (WTS) and estimate the mean power and the associated standard deviation considering the wind speed and the dynamics of the power curve of the turbines. Among them, the performance of PESA algorithm looks a little bit superior than the other three algorithms. In conclusion, the use of MOEAs is technically feasible and opens new perspectives for assisting utility companies in developing wind farms.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.