دانلود مقاله ISI انگلیسی شماره 78946
عنوان فارسی مقاله

الگوریتم های سریع برای پیش بینی خطی پراکنده سفارش بالا با برنامه های کاربردی پردازش گفتار

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
78946 2016 14 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Fast algorithms for high-order sparse linear prediction with applications to speech processing
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Speech Communication, Volume 76, February 2016, Pages 143–156

کلمات کلیدی
پیش بینی خطی پراکنده؛ گفتار و پردازش های صوتی - برنامه ریزی خطی؛ بهینه سازی زمان واقعی - بازسازی گفتار؛ پنهانی بودن از دست دادن بسته
پیش نمایش مقاله
پیش نمایش مقاله الگوریتم های سریع برای پیش بینی خطی پراکنده سفارش بالا با برنامه های کاربردی پردازش گفتار

چکیده انگلیسی

In speech processing applications, imposing sparsity constraints on high-order linear prediction coefficients and prediction residuals has proven successful in overcoming some of the limitation of conventional linear predictive modeling. However, this modeling scheme, named sparse linear prediction, is generally formulated as a linear programming problem that comes at the expenses of a much higher computational burden compared to the conventional approach. In this paper, we propose to solve the optimization problem by combining splitting methods with two approaches: the Douglas–Rachford method and the alternating direction method of multipliers. These methods allow to obtain solutions with a higher computational efficiency, orders of magnitude faster than with general purpose software based on interior-point methods. Furthermore, computational savings are achieved by solving the sparse linear prediction problem with lower accuracy than in previous work. In the experimental analysis, we clearly show that a solution with lower accuracy can achieve approximately the same performance as a high accuracy solution both objectively, in terms of prediction gain, as well as with perceptually relevant measures, when evaluated in a speech reconstruction application.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.