دانلود مقاله ISI انگلیسی شماره 78957
عنوان فارسی مقاله

الگوریتم خوشه بندی c-means فازی مبتنی بر هسته بر اساس الگوریتم ژنتیک

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
78957 2016 6 صفحه PDF سفارش دهید 5150 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 188, 5 May 2016, Pages 233–238

کلمات کلیدی
خوشه بندی فازی؛ خوشه بندی c-means فازی؛ c-means فازی بر اساس هسته؛ الگوریتم ژنتیک
پیش نمایش مقاله
پیش نمایش مقاله الگوریتم خوشه بندی c-means فازی مبتنی بر هسته بر اساس الگوریتم ژنتیک

چکیده انگلیسی

Fuzzy c-means clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It has the advantage of giving good modeling results in many cases, although, it is not capable of specifying the number of clusters by itself. Aimed at the problems existed in the FCM clustering algorithm, a kernel-based fuzzy c-means (KFCM) is clustering algorithm is proposed to optimize fuzzy c-means clustering, based on the Genetic Algorithm (GA) optimization which is combined of the improved genetic algorithm and the kernel technique (GAKFCM). In this algorithm, the improved adaptive genetic algorithm is used to optimize the initial clustering center firstly, and then the KFCM algorithm is availed to guide the categorization, so as to improve the clustering performance of the FCM algorithm. In the paper, Matlab is used to realize the simulation, and the performance of FCM algorithm, KFCM algorithm and GAKFCM algorithm is testified by test datasets. The results proved that the GAKFCM algorithm proposed overcomes FCM׳s defects efficiently and improves the clustering performance greatly.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.