دانلود مقاله ISI انگلیسی شماره 79449
عنوان فارسی مقاله

PGGP: زمان ایجاد نمونه اولیه از طریق برنامه نویسی ژنتیک

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
79449 2016 12 صفحه PDF سفارش دهید محاسبه نشده
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
PGGP: Prototype Generation via Genetic Programming
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 40, March 2016, Pages 569–580

کلمات کلیدی
68T10؛ نسل نمونه اولیه 68T20؛ برنامه نویسی ژنتیک؛ طبقه بندی 1NN؛ طبقه بندی الگو
پیش نمایش مقاله
پیش نمایش مقاله PGGP: زمان ایجاد نمونه اولیه از طریق برنامه نویسی ژنتیک

چکیده انگلیسی

Prototype generation (PG) methods aim to find a subset of instances taken from a large training data set, in such a way that classification performance (commonly, using a 1NN classifier) when using prototypes is equal or better than that obtained when using the original training set. Several PG methods have been proposed so far, most of them consider a small subset of training instances as initial prototypes and modify them trying to maximize the classification performance on the whole training set. Although some of these methods have obtained acceptable results, training instances may be under-exploited, because most of the times they are only used to guide the search process. This paper introduces a PG method based on genetic programming in which many training samples are combined through arithmetic operators to build highly effective prototypes. The genetic program aims to generate prototypes that maximize an estimate of the generalization performance of an 1NN classifier. Experimental results are reported on benchmark data to assess PG methods. Several aspects of the genetic program are evaluated and compared to many alternative PG methods. The empirical assessment shows the effectiveness of the proposed approach outperforming most of the state of the art PG techniques when using both small and large data sets. Better results were obtained for data sets with numeric attributes only, although the performance of the proposed technique on mixed data was very competitive as well.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.