دانلود مقاله ISI انگلیسی شماره 8251
عنوان فارسی مقاله

بهینه سازی شبیه سازی چند هدفه با استفاده از تحلیل پوششی داده ها و الگوریتم ژنتیکی: برنامه خاص تعیین سطوح منابع مطلوب در خدمات جراحی

کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
8251 2013 12 صفحه PDF سفارش دهید 9790 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Omega, Volume 41, Issue 5, October 2013, Pages 881–892

کلمات کلیدی
- بهینه سازی چند معیاری شبیه سازی - الگوریتم ژنتیک - خدمات جراحی
پیش نمایش مقاله
پیش نمایش مقاله بهینه سازی شبیه سازی  چند هدفه با استفاده از تحلیل پوششی داده ها و الگوریتم ژنتیکی: برنامه خاص تعیین سطوح منابع مطلوب در خدمات جراحی

چکیده انگلیسی

Simulation is a powerful tool for modeling complex systems with intricate relationships between various entities and resources. Simulation optimization refers to methods that search the design space (i.e., the set of all feasible system configurations) to find a system configuration (also called a design point) that gives the best performance. Since simulation is often time consuming, sampling as few design points from the design space as possible is desired. However, in the case of multiple objectives, traditional simulation optimization methods are ineffective to uncover the efficient frontier. We propose a framework for multi-objective simulation optimization that combines the power of genetic algorithm (GA), which can effectively search very large design spaces, with data envelopment analysis (DEA) used to evaluate the simulation results and guide the search process. In our framework, we use a design point's relative efficiency score from DEA as its fitness value in the selection operation of GA. We apply our algorithm to determine optimal resource levels in surgical services. Our numerical experiments show that our algorithm effectively furthers the frontier and identifies efficient design points.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.