دانلود مقاله ISI انگلیسی شماره 93131
کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
93131 2018 37 صفحه PDF سفارش دهید 9058 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
Combination of fuzzy based on a meta-heuristic algorithm to predict electricity price in an electricity markets
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Chemical Engineering Research and Design, Volume 131, March 2018, Pages 333-345

پیش نمایش مقاله
پیش نمایش مقاله

چکیده انگلیسی

The price forecasting is one of the most important issues in electricity markets. For this purpose, an accurate prediction model is demanded for optimal operation as well as planning in power system. In this work, a novel approach composed of Wavelet Transform and Takagi–Sugeno (TS) fuzzy rule-based system is proposed for day-ahead price forecasting of electricity markets. In this method, the input of price data is clustered by TS fuzzy model. In the identification of the TS fuzzy model, a hyperplane prototype fuzzy clustering model is proposed, which obtain the rules. Furthermore, in this model, a new stochastic search algorithm is applied to optimize the clustering objective function. To implement the proposed forecast strategy, the price data is first decomposed by Wavelet Transform (WT). Then, each produced wavelet component is filtered by two stage feature selection based on mutual information. Afterward, the hybrid fuzzy neural network-based forecast engine is used to predict the future values of each price component. This model, is tested on real-world electricity markets of Ontario and New England through the comparison with other techniques. Obtained results demonstrate the validity of proposed technique.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.