دانلود مقاله ISI انگلیسی شماره 93190
کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
93190 2017 34 صفحه PDF سفارش دهید 16053 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
An experimental study of hyper-heuristic selection and acceptance mechanism for combinatorial t-way test suite generation
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 399, August 2017, Pages 121-153

پیش نمایش مقاله
پیش نمایش مقاله

چکیده انگلیسی

Recently, many meta-heuristic algorithms have been proposed to serve as the basis of a t-way test generation strategy (where t indicates the interaction strength) including Genetic Algorithms (GA), Ant Colony Optimization (ACO), Simulated Annealing (SA), Cuckoo Search (CS), Particle Swarm Optimization (PSO), and Harmony Search (HS). Although useful, meta-heuristic algorithms that make up these strategies often require specific domain knowledge in order to allow effective tuning before good quality solutions can be obtained. Hyper-heuristics provide an alternative methodology to meta-heuristics which permit adaptive selection and/or generation of meta-heuristics automatically during the search process. This paper describes our experience with four hyper-heuristic selection and acceptance mechanisms namely Exponential Monte Carlo with counter (EMCQ), Choice Function (CF), Improvement Selection Rules (ISR), and newly developed Fuzzy Inference Selection (FIS), using the t-way test generation problem as a case study. Based on the experimental results, we offer insights on why each strategy differs in terms of its performance.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.