دانلود مقاله ISI انگلیسی شماره 93196
کد مقاله سال انتشار مقاله انگلیسی ترجمه فارسی تعداد کلمات
93196 2017 19 صفحه PDF سفارش دهید 7498 کلمه
خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
عنوان انگلیسی
A genetic algorithm with an earliest due date encoding for scheduling automotive stamping operations
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Industrial Engineering, Volume 105, March 2017, Pages 201-209

پیش نمایش مقاله
پیش نمایش مقاله

چکیده انگلیسی

This article considers a manufacturing scheduling problem related to automotive stamping operations. A mathematical program of the associated single machine problem is formulated with known demand, production constraints involving stamping dies, and limited storage space availability. It is demonstrated that a generalized version of the standard earliest due-date heuristic efficiently generates optimal solutions for specific problem instances (relatively high initial inventory cases and no tardiness) but poor solutions for cases involving relatively low initial inventories and/or longer time horizons. Branch and bound is shown to be inefficient in terms of computational time for relevant problem sizes. To build a viable decision support tool, we propose a meta-heuristic, “genetic algorithms with generalized earliest due dates” (GAGEDD), which builds on earliest due date scheduling. Alternative methods are illustrated and compared using a real-world case study of stamping press scheduling by an automotive manufacturer.

خرید مقاله
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.