Cost-Effectiveness and Clinical Effectiveness of the Risk Factor Management Clinic in Atrial Fibrillation
The CENT Study

Rajeev K. Pathak, MBBS, PhD,a Michelle Evans, MHLTHEC&POL,a Melissa E. Middeldorp,a Rajiv Mahajan, MD, PhD,a
Abhinav B. Mehta, M Act Sr.,b Megan Meredith,a Darragh Twomey, MBBS,a Christopher X. Wong, MBBS, MSc, PhD,a
Jeroen M.L. Hendriks, PhD,a Walter P. Abhayaratna, MBBS, PhD,c Jonathan M. Kalman, MBBS, PhD,d
Dennis H. Lau, MBBS, PhD,a Prashanthan Sanders, MBBS, PhDa

ABSTRACT

BACKGROUND Atrial fibrillation (AF) imposes a substantial cost burden on the healthcare system. Weight and risk factor management (RFM) reduces AF burden and improves the outcomes of AF ablation.

OBJECTIVES This study sought to evaluate the cost and clinical effectiveness of integrating RFM into the overall management of AF.

METHODS Of 1,415 consecutive patients with symptomatic AF, 825 patients had body mass index \geq 27 kg/m2. After screening for exclusion criteria, the final cohort comprised 355 patients: 208 patients who opted for RFM and 147 control subjects and were followed by 3 to 6 monthly clinic review, 7-day Holter monitoring, and AF Symptom Score. A decision analytical model calculated the incremental cost-effectiveness ratios of cost per unit of global well-being gained and unit of AF burden reduced.

RESULTS There were no differences in baseline characteristics or follow-up duration (p = NS). Arrhythmia-free survival was better in the RFM compared with control subjects (Kaplan-Meier: 79% vs. 44%; p < 0.001). At follow-up, RFM group had less unplanned specialist visits (0.19/C6 0.4 vs. 1.94/C6 2.0; p < 0.001), hospitalizations (0.74/C6 1.3 vs. 1.05/C6 1.6; p = 0.03), cardioversions (0.89/C6 1.5 vs. 1.51/C6 2.3; p = 0.002), emergency presentations (0.18/C6 0.5 vs. 0.76/C6 1.2; p < 0.001), and ablation procedures (0.60/C6 0.69 vs. 0.72/C6 0.86; p = 0.03). Antihypertensive (0.53/C6 0.7 vs. 0.78/C6 0.6; p = 0.04) and antiarrhythmic (0.26/C6 0.5 vs. 0.91/C6 0.6; p = 0.003) use declined in RFM. The RFM group had an increase of 0.1930 quality-adjusted life years and a cost saving of $12,094 (incremental cost-effectiveness ratios of $62,653 saved per quality-adjusted life years gained).

CONCLUSIONS A structured physician-directed RFM program is clinically effective and cost saving.

(J Am Coll Cardiol EP 2017; - - -) Crown Copyright © 2017 Published by Elsevier on behalf of the American College of Cardiology Foundation. All rights reserved.

From the aCentre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia; bResearch School of Finance, Actuarial Studies and Applied Statistics, Australian National University, Canberra, Australia; cCollege of Medicine, Biology and Environment, Australian National University and Canberra Hospital, Canberra, Australia; and the dDepartment of Cardiology, Royal Melbourne Hospital and the Department of Medicine, University of Melbourne, Melbourne, Australia. This study was supported by funds from the Centre for Heart Rhythm Disorders at the University of Adelaide, Adelaide, Australia. The sponsor of the study is the University of Adelaide. Several of the authors are employees or students of the University of Adelaide. The sponsor has had no direct involvement in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication. Dr. Pathak is supported by a Postgraduate Scholarship from the Lion’s Medical Research Foundation, a Leo J. Mahar Electrophysiology Scholarship from the University of Adelaide, and an Australian Postgraduate Award from the University of Adelaide. Ms. Middeldorp is supported by the Robert J. Craig Scholarship from the University of Adelaide. Dr. Mahajan is supported by the Leo J. Mahar Lectureship from the University of Adelaide. Dr. Twomey is supported by the Leo J. Mahar Electrophysiology Scholarship from the University of Adelaide. Dr. Wong is supported by a Rhodes scholarship and a Postgraduate Medical Scholarship from the National Health and Medical Research Council of
Recently reported epidemiological data confirm the emergence of atrial fibrillation (AF) as a global epidemic (1). This has significant and progressive impact on health care costs because of its association with increased cardiovascular morbidity, reduced quality of life, stroke, and mortality (2–4). The incremental cost of AF in the United States is estimated to range between $60 billion and $260 billion per year (5). Hospitalization, increased medication use, and procedural requirements constitute the major contributors to the total treatment cost of patients with AF (6–9). Ageing populations are an important contributor to the growing burden of AF. Recent data have also implicated the increasing prevalence of risk factors, such as obesity, hypertension, diabetes mellitus, and obstructive sleep apnea (10,11). Therefore, there is an urgent need for improved and cost-effective primary and secondary prevention strategies to reduce the impact of this enormous health burden.

Sinus rhythm is associated with better quality of life (12). Detrimental effects of antiarrhythmic agents offset the benefit from sinus rhythm maintenance (13,14). Catheter ablation of AF has evolved as an effective therapy for drug-refractory symptomatic AF (15). However, it is resource intensive and has significant upfront costs. Furthermore, reports of long-term outcomes demonstrate attrition in success with time (16–18). The cost-effectiveness of AF ablation is greatly influenced by the number of procedures, their success rate, and procedural complications (19,20). Studies have associated cardiac risk factors with the more frequent recurrence of AF, increased risk of complications, and direct medical costs (21–24). Aggressive management of these risk factors in a dedicated physician-led clinic has been shown to reduce the burden of AF and improve the long-term success of ablation (25–27).

In the LEGACY (Long-Term Effect of Goal Directed Weight Management in an Atrial Fibrillation Cohort: A Long-Term Follow-Up Study) study, progressive weight-loss had a dose-dependent effect on long-term freedom from AF (28). However, it is not clear if a dedicated risk factor management (RFM) clinic is cost-effective. In this study, we aim to evaluate the cost and clinical effectiveness of a dedicated RFM clinic in overall management of AF.

METHODS

STUDY POPULATION. The impact of weight loss and its effects on AF outcomes from our registry were presented in the LEGACY Study (28). In the LEGACY study, all suitable patients (with body mass index ≥27 kg/m² and ≥1 risk factor) were offered RFM in a dedicated physician-directed clinic at the time of initial assessment (Figure 1). Here we compare the clinical and cost-effectiveness of a dedicated RFM clinic for long-term results of patients diagnosed with AF. Patients were dichotomized based on whether they accepted this strategy and formed the intervention group (RFM group), whereas those who declined formed the control group. The study protocol was approved by the Human Research Ethics Committee of the Royal Adelaide Hospital and University of Adelaide, Adelaide, Australia.

RISK FACTOR MANAGEMENT. Patients in the RFM group attended a physician-directed RFM clinic (in addition to their arrhythmia follow-up) at least every 3 months and were encouraged to use support counseling and to schedule more frequent reviews as required. Risk factors were managed according to American College of Cardiology/American Heart Association guidelines. The details of our RFM have been previously presented (28). In brief, a structured motivational, goal-directed program using face-to-face counseling was used to achieve behavioral change for weight management and increasing physical activity. Weight, hypertension, glucose intolerance, dyslipidemia, sleep apnea, and alcohol and tobacco use were

ABBREVIATIONS AND ACRONYMS

- **AF** = atrial fibrillation
- **AFSS** = Atrial Fibrillation Severity Scale
- **CI** = confidence interval
- **HR** = hazard ratio
- **ICER** = incremental cost-effectiveness ratios
- **GALY** = quality-adjusted life years
- **RFM** = risk factor management

Australia. Dr. Hendriks is supported by the Derek Frewin Lectureship from the University of Adelaide. Dr. Abhayaratna is supported by the National Heart Foundation of Australia; served on the advisory board of Biosense Webster and Boston Scientific; and received research funding from St Jude Medical, Biosense-Webster, Medtronic, and Boston Scientific. Dr. Lau is supported by a Postdoctoral Fellowship from the National Health and Medical Research Council of Australia and by a Robert J. Craig Lectureship from the University of Adelaide. Dr. Sanders is supported by the National Heart Foundation of Australia and by Practitioner Fellowships from the National Health and Medical Research Council of Australia; has served on the advisory board of Biosense-Webster, Medtronic, CathRx, and St Jude Medical; received lecture and/or consulting fees from Biosense-Webster, Medtronic, St Jude Medical, and Boston Scientific; and received research funding from Medtronic, St Jude Medical, Boston Scientific, Biotronik, and Sorin.

Manuscript received August 25, 2016; revised manuscript received December 20, 2016, accepted December 22, 2016.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات