Impact of Granulocyte-colony Stimulating Factor on Bleomycin-induced Pneumonitis in Chemotherapy-treated Germ Cell Tumors

Edmond M. Kwan,1 Sophie Beck,1 Eitan Amir,2 Michael A. Jewett,3 Jeremy F. Sturgeon,2 Lynn Anson-Cartwright,4 Peter W. Chung,4 Padraig R. Warde,4 Malcolm J. Moore,5 Philippe L. Bedard,2 Ben Tran1,2

Abstract
The impact of granulocyte-colony stimulating factor use on bleomycin-induced pneumonitis in patients with germ cell tumor is not clearly defined. This analysis of over 200 patients with germ cell tumor treated with bleomycin-containing chemotherapy found no association between the use of granulocyte-colony stimulating factor, and the incidence or severity of bleomycin-induced pneumonitis. The decision to use growth factor support in this population should continue to be individualized.

Objective: To examine the impact of granulocyte-colony stimulating factor (G-CSF) use on the incidence and severity of bleomycin-induced pneumonitis (BIP) in patients with germ cell tumor (GCT) receiving first-line chemotherapy.

Patients and Methods: Clinical data from our institutional GCT database was complemented by review of radiology, pharmacy, and medical records. All patients receiving first line chemotherapy between January 1, 2000 and December 31, 2010 were included. Patients receiving at least 1 dose of G-CSF were identified. BIP was graded using Common Terminology Criteria for Adverse Events criteria. Logistic regression was used to explore predictors for risk and severity of BIP. Statistical significance was defined as $P < .05$. Results: Data on 212 patients with GCT treated with a bleomycin-containing chemotherapy regimen were available. The median age was 31 years. The median follow-up period was 36.7 months. BIP occurred in 73 patients (34%), a majority (n = 55) of which were asymptomatic events (Common Terminology Criteria for Adverse Events, grade 1). G-CSF use was not associated with increased risk of BIP in multivariable analyses (odds ratio, 1.60; $P = .13$), nor was it associated with increased severity of symptomatic BIP (on average 1.22 grades higher; $P = .09$). There was a non-statistically significant trend towards greater risk of BIP in patients that developed renal impairment during chemotherapy treatment (odds ratio, 2.56; $P = .053$).

Conclusion: In patients with GCT receiving first line chemotherapy, G-CSF use is not associated with an increased risk of BIP. Furthermore, the use of G-CSF did not have any significant effect on the severity of BIP events. Clinicians are reminded to be vigilant of patients that develop renal impairment while undergoing chemotherapy treatment, given the greater risk of BIP.

Clinical Genitourinary Cancer, Vol. ■, No. ■, ■■ © 2017 Elsevier Inc. All rights reserved.
Keywords: G-CSF, Growth factors, Lung injury, Pulmonary toxicity, Testicular cancer

Introduction
Considerable progress has been made in the medical management of advanced germ cell tumors (GCTs) as a result of the introduction of cisplatin to chemotherapy regimens in the mid-1970s.1 Although prognosis varies according to International Germ-Cell Cancer Collaborative Group (IGCCCG) risk classification, cure rates...
G-CSF and BIP in GCT

approach 80% for men with advanced stage GCT.\(^2\) Given the high rate of cure, the reduction in treatment-related toxicity is of critical importance.

Multiple studies have established BEP (bleomycin, etoposide, and cisplatin) as the standard first-line chemotherapy regimen for disseminated GCT.\(^3\)\(^-\)\(^5\) It is well-recognized that the administration of bleomycin can result in the serious complication of pulmonary fibrosis. Bleomycin hydrolase is an enzyme primarily responsible for degrading bleomycin and is present in all tissues except the lungs and skin, the key sites of the well-recognized pulmonary and skin toxicities.\(^6\) The other leading hypothesis for pulmonary toxicity is the direct damage of vascular endothelium by bleomycin-induced cytokines and free radicals.\(^7\)

The incidence of pulmonary toxicity (both asymptomatic, radiologic-only disease and symptomatic disease) is dose-dependent, occurring in 8.5% of patients exposed to > 300 IU of bleomycin.\(^8\) Bleomycin-induced pneumonitis (BIP) is associated with a mortality risk of 1% to 3%.\(^8\)\(^-\)\(^9\) However, attempts to reduce or omit bleomycin in GCT treatment regimens have resulted in poorer survival outcomes.\(^6\)\(^-\)\(^10\) Given that rates of grade 3 to 4 neutropenia approach 60% in patients receiving BEP,\(^10\) granulocyte-colony stimulating factor (G-CSF) is often administered as both prophylaxis against febrile neutropenia and to maintain dose intensity. However, its use has been tempered by concerns over the potential association with BIP, as observed in Hodgkin lymphoma. The authors hypothesized that variations in the bleomycin hydrolase gene may result in significant changes in bleomycin metabolism, though this was not formally explored in the study.\(^11\)

Here, we report on a large single institution retrospective study examining the impact of G-CSF use on the incidence and severity of BIP. We also explored other potential risk factors for BIP development, as well as the degree of benefit G-CSF had on reducing rates of febrile neutropenia.

Patients and Methods

Our study used data collected as part of the Princess Margaret Cancer Centre institutional multi-disciplinary GCT database (eTestis). We identified all patients who received first-line chemotherapy for GCT between January 1, 2000 and December 31, 2010. From this group, patients who received BEP were then extracted for further analysis. In doing so, 2 patient populations were formed: the entire cohort and the bleomycin-treated cohort. The institutional practice during the study period was to use BEP as the predominant chemotherapy regimen for non-seminoma. For good-risk seminoma, 4 cycles of EP (etoposide and cisplatin) was the preferred institutional regimen up until 2008/2009, with a subsequent transition to 3 cycles of BEP.

The eTestis database was complemented by review of the pharmacy database to determine the specific chemotherapy regimens prescribed, as well as the use of G-CSF. BIP and febrile neutropenia events were identified by chart review of electronic medical records, including chest x-ray (CXR) and computed tomography (CT) scan reports. Information pertaining to the specific time point when BIP was diagnosed in relation to chemotherapy administration (during chemotherapy vs. after completion of chemotherapy) was not collected. Data extracted for this study included patient and treatment factors known to influence risk of developing BIP, including

Statistical Analyses

We used SPSS version 21.0 (SPSS Inc, Chicago IL) for statistical analyses. Analyses were restricted to the cohort of patients that had been treated with bleomycin-containing chemotherapy regimens. Data were presented descriptively as means, medians, and their respective ranges. Analyses were conducted initially in the univariable setting with any variable showing a P-value of < .10 being selected for further assessment in multivariable analyses.

We conducted univariable and multivariable analyses using logistic regression, to determine if there was an association between...
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات