Long-range memory, distributional variation and randomness of bitcoin volatility

Salim Lahnmiri, Stelios Bekiros, Antonio Salvi

Abstract

We investigate the nonlinear patterns of volatility in seven Bitcoin markets. In particular, we explore the fractional long-range dependence in conjunction with the potential inherent stochasticity of volatility time series under four diverse distributional assumptions, i.e., Normal, Student-t, Generalized Error (GED), and t-Skewed distribution. Our empirical findings signify the existence of long-range memory in Bitcoin market volatility, irrespectively of distributional inference. The same applies to entropy measurement, which indicates a high degree of randomness in the estimated series. As Bitcoin markets are highly disordered and risky, they cannot be considered suitable for hedging purposes. Our results provide strong evidence against the efficient market hypothesis.

1. Introduction

Volatility plays a major role in risk modeling and assessment as well as in the pricing of complex financial derivative products. Therefore, studying the inherent features of the conditional variance of financial time series has received a growing interest in econophysics recently. For instance, an adaptive stochastic model was proposed to explore the internal dynamics of American and Spanish stock markets [1] or GARCH-family models were employed in predicting gold market volatility [2]. A novel set-up to forecast the parameters of constant elasticity of variance implied by American option pricing was introduced in [3], whilst in [4] the dynamics of the links between volatility and market integration as well as between persistence and integration were investigated for emerging stock markets. Furthermore, a hybrid algorithm combining grey modeling and extreme machine learning to forecast the volatility of China interbank offered rate was presented in [5], the complexity in volatility series of world major financial and commodity markets was examined in [6], while volatility predictability in exchange markets via the utilization of artificial neural networks, was proposed in [7].

Other studies attempted an exhaustive investigation of fractal scaling effects and risk preference of traders under option pricing and portfolio hedging [8], the analysis of asymmetry, leverage and persistence of shocks upon price volatility in the major markets of fertilizers [9], or the impact of leverage effects and economic policy uncertainty on future realized volatility via regime switching [10]. Overall, the study of long memory in volatility series becomes more and more influential, and ultimately of immense importance in recent econophysics literature. This particular nonlinear fractional pattern was examined in case of G7’s major stock market indices [11], for high-frequency returns of the Athens composite share price index [12], in case of gold price returns during different crisis sub-periods [13], in Moroccan family business stocks [14], Chinese and U.S. stock markets [15] and for the Indian realized volatility series [16].

The primary aim of our work is to extract and detect potential long memory patterns hidden under inherent randomness within the volatility series of various Bitcoin markets under different distributional assumptions. To the best of our knowledge this crucial issue is missing from the econophysics literature on Bitcoin [17–19] and no one has examined it before. While the long range dependence of Bitcoin was examined via detrended fluctuation analysis [17] and rescaled Hurst exponent [18], yet the aforementioned direction was never pursued. More recently, chaos,
randomness and multi-fractality in Bitcoin markets were examined in [19]. Empirical results showed that Hurst exponent estimated by detrended fluctuation analysis changes significantly during the first years of the existence of Bitcoin and tends to stabilize in recent times [17]. In addition, the rescaled Hurst exponent showed strong anti-persistence in Bitcoin returns [18]. In [19] it was demonstrated that Bitcoin price is chaotic during periods of low and high variability, while the level of uncertainty significantly increased during high price variability. Both prices and returns exhibit long-range correlations indicating that fat-tailed probability distributions could be the main source of multi-fractality. Other works examined the similarity between Bitcoin, gold, and US dollar volatility [20] and the ability of several generalized autoregressive conditional heteroskedasticity (GARCH) models to explain Bitcoin variance [21]. It was found that GARCH modeling explained gold and American dollar variance [20], while fitted the data adequately [21].

Bitcoin markets which entail various digital currencies trading are speculative and highly volatile [19–21]. Due to the remarkable development of the Bitcoin markets in terms of trading volume through recent years, the dynamics of market volatility may exhibit some unique characteristics, such as fractality, long-range memory and randomness, require further documentation and analysis in order to better comprehend the inherent nonlinear dynamics and the forecastability of crypto currency markets. We intend to show which factors drive those nonlinear systems considering that the magnitude of long-range dependencies could destabilize them towards deterministic chaotic trajectories or high stochasticity or even hybrid behaviours.

We employ diverse specifications for the filtered error distribution of the first moment (variance) is modeled under the presence of fat-tails, leptokurtosis, and skewness, which are well-documented stylized facts of financial markets. Those features are investigated for seven different Bitcoin markets for the sake of generalization of the findings. Eventually, we attempt to better grasp the speculative nature of digital currency markets and accordingly enrich the relevant econophysics literature [1–21].

The remainder of the paper is organized as follows: Section 2 outlines the introduced approaches utilized in our exhaustive investigation. We incorporate and combine GARCH-based estimation, long-range memory detection, different distributional assumptions and randomness entropic measurement. The data analysis and empirical results are exposed in Section 3. Finally, inference and conclusions are presented in Section 4.

2. Methodological approaches

In quantitative finance, volatility refers to the conditional standard deviation (or conditional variance) of the underlying asset returns. In this regard, the accurate estimation of time-varying volatility, without a doubt is important for risk evaluation, derivative pricing, hedging, trading and forecasting. In our study, we assess fractality in the volatility structure of Bitcoin markets, via the application of the fractionally integrated GARCH (FIGARCH) framework, which captures long-range memory by incorporating fractional integration in any model specification of the 2nd moment [22]. Indeed, the FIGARCH model [22] was proposed as an extension to the standard GARCH family in order to quantify long-range memory in volatility series. As opposed to the naive GARCH model, the FIGARCH process is capable of distinguishing between short memory and long memory in the underlying time series. We employ FIGARCH to estimate time-varying volatility and assess its inherent long-range dependence structure under different assumptions regarding the distribution of the filtered residuals. Hence, the normal (Gaussian), Student’s t, generalized error distribution (GED) and t-skewed distribution are incorporated in our models in an attempt to reveal which one better matches the observed stylized features of Bitcoin volatility.

Consider that return series are denoted by r_t where t is the time index. Then, the popular benchmark GARCH (1,1) model for simplicity herein, is given by:

$$r_t = \mu + \epsilon_t$$

with,

$$\epsilon_t = h_t^{1/2} \eta_t$$

$$h_t = \omega + \alpha \epsilon_{t-1}^2 + \beta h_{t-1}$$

where μ is the conditional mean, h_t is the conditional standard deviation (volatility), and $\eta_t \sim N(0,1)$. Then, the FIGARCH (1,d,1) is given by:

$$h_t = \omega + \beta h_{t-1} + [1 - (1 - \beta L)^{-1}(1 - \phi L)(1 - L^d)] \epsilon_t^2$$

where d is the fractional integration parameter used to characterize long-range memory in the volatility series h_t. For the parameters, it is indicated that $0 < d < 1$, $\omega > 0$, $\phi < 1$, while L stands for the lag operator. In the FIGARCH framework [22], when $0 < d < 1$ intermediate ranges of persistence are allowed. When $d = 1$ volatility shocks exhibit full integrated persistence, whilst in case of $d = 0$ volatility shocks decay under a geometric rate. In our work, all parameters of the FIGARCH model are estimated by using the standard maximum likelihood method. In addition, as mentioned previously, the FIGARCH process is estimated for four distributions of the error terms η_t: normal (Gaussian), Student-t, generalized error distribution (GED), and t-skewed distribution.

The use of the normality assumption is widely considered valid in many empirical applications for financial markets, wherein the Efficient Market Hypothesis (EMH) emerges as the dominant model. However, it has been documented that it does not fit real data and its alternative, namely the Fractal Market Hypothesis (FMH), could be more realistic. Therefore, alternative distributional assumptions are desirable and perhaps impending for estimation purposes. Specifically, the Student-t distribution incorporates fat-tailedness in data, the t-skewed distribution is able to flexibly fit leptokurtic and skewed return distributions, and the generalized error distribution (GED) poses the property of flexible symmetry and tails as well. Under each distribution assumption, a particular long memory parameter d is obtained.

Finally, we apply the well-known Shannon entropy measure [23] to quantify randomness, stochasticity whereby informational redundancy, in the investigated series. Considering the time series $\{x_t\}_{t=1}^n$, we express Shannon entropy (SE) as:

$$SE(x) = -\sum_{j=1}^{n} \lambda_j \log(\lambda_j)$$

where λ_j is a discrete probability such that $\sum_{j=1}^{n} \lambda_j = 1$. The Shannon entropy obtains its maximum score when all the values of the underlying time series $\{x_t\}_{t=1}^n$ are equally probable. Interestingly, when it approaches $\log(n)$, $\{x_t\}_{t=1}^n$ is nearly random. Conversely, the Shannon entropy reaches the minimum value when a specific x_t is guaranteed to occur, with $\text{Prob}(x_t) = 1$.

3. Data and empirical results

Daily Bitcoin price datasets for seven markets were extracted from [24] source. The seven Bitcoin markets (in US dollars) and their respective time periods are the following: BITX (15 November 2016 to 9 November 2017), CEX.IO (24 August 2015 to 9 November 2017), COINBASE (13 January 2015 to 9 November 2017), EXMO
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات