Can optimum yield and quality of vegetables be reconciled with low residual soil mineral nitrogen at harvest?

Karoline D’Haene⁎, Joost Salomez, Micheline Verhaeghe, Tomas Van de Sande, Joris De Nies, Stefaan De Neve, Georges Hofman

⁎ Corresponding author.

A R T I C L E I N F O

Keywords:
Crop available nitrogen
Dose response curve
Nitrates directive
Nitrogen fertiliser application rate
Soil mineral nitrogen balance

A B S T R A C T

Despite massive efforts over the past twenty-five years to reduce nitrogen (N) losses, too high nitrate (NO₃⁻) concentrations in surface and groundwater from agricultural sources remain a major environmental concern, especially in field grown vegetable production areas. A strict restriction of the N fertiliser application rates is accepted to be the best N management strategy to minimise NO₃⁻ leaching losses to surface and groundwater.

We analysed Flemish field experiments on lettuce, spinach, leek, carrots, cauliflower and Brussels sprouts with various N fertiliser application rates (2009–2016) with a view to fine-tune the N fertiliser application rates where possible. To find an economic and ecological optimum we considered both yield quantity, quality (leaf colour and uniformity for all vegetables, and nitrate concentration for leafy vegetables) and residual soil mineral nitrogen (RSMN) to rooting depth at harvest in function of crop available N. Even at relatively high crop available N, NO₃⁻ concentrations in lettuce and spinach remained below the legal maximum concentration. Contrary to some farmers’ perception, low RSMN can be obtained without a low score for quality parameters leaf colour and uniformity, except for the un- and underfertilised plots. When crop available N exceeds the optimum, RSMN increased steeply (i.e. a breakpoint) for all considered vegetables, except carrots, implying an increased risk of NO₃⁻ leaching. The results indicate that N fertilisation advice and maximum allowed N fertiliser application rates can be reduced, at least for some vegetables, without a risk of decreasing the marketable yield quantity and quality. As N uptake continues to increase, to a variable extent, after the maximum marketable yield has been obtained, N fertiliser application rates obviously should be based on marketable yield rather than total yield.

1. Introduction

In 2015, vegetable production in Europe (EU) amounted to 2178 × 10³ ha on a total of 178779 × 10³ ha utilised agricultural land. Despite the relatively small area, vegetable production represented 13.1% of EU’s agricultural economic output in 2015, due to the high added value of vegetables compared to arable crops (Forti and Henrard, 2016).

These positive economic figures, however, strongly contrast with observed negative effects. The risk of possibly high nitrogen (N) losses is a consequence of vegetables receiving large N inputs from both mineral and organic N fertilisers, in combination with short growing cycles, shallow rooting depths and the need of high available N till harvest for vegetables harvested in vegetative stage. This results in high residual soil mineral nitrogen (RSMN) and as a consequence high risks of NO₃⁻ losses. Furthermore, the current N fertiliser cost is low and is not an incentive for horticulturists to reduce N fertiliser application rates (de Haan et al., 2015). Without an adequate management adaptation (e.g. band instead of broadcasted fertilisation) only small amounts of N fertiliser can be reduced without risking a trade-off with yield potential and vegetable quality, at least to some farmers’ perception.

To counteract ill-considered N fertilisation strategies and hence to protect ground- and surface waters against pollution caused by NO₃⁻...
leaching, the European Nitrates Directive (91/676/EEC) has imposed a maximum concentration in ground- and surface waters of 50 mg NO₃⁻
L⁻¹ (Anonymous, 1991). Despite massive efforts over the past twenty-five years to reduce N losses and to increase N use efficiency (NUE), too high NO₃⁻ concentrations in ground- and surface waters from agricultural sources remain a major environmental concern, especially in field grown vegetable production areas. Excessive N availability can also negatively influence yield and vegetable quality. It can aggravate disease incidences (Westerveld et al., 2008), have effects on taste components, like bitterness in cabbage (Rahn, 2000; Albornoz, 2016), induce an undesired increase of the NO₃⁻ concentration, especially in leafy vegetables (Rahn, 2000; Ekart et al., 2013; Albornoz, 2016) and reduce the shelf life (Kodithuwakkuy and Kirkhisinghe, 2009; Hoque et al., 2010; Albornoz, 2016).

For the aforementioned reasons, there is an urgent need to significantly improve NUE in intensive vegetable production. Fractionation of N fertilisation, smart crop rotations and crop residue management can all contribute to improving the NUE (Neeteson and Whitmore, 1999; Hartz, 2006; Thompson et al., 2013), but a strict management can all contribute to improving the NUE (Neeteson and Whitmore, 1999; Hartz, 2006; Thompson et al., 2013), but a strict

2. Materials and methods

2.1. Introduction

Field experiments with different levels of N fertiliser were carried out in the period 2009–2016 at different locations in the three vegetable growing regions in Flanders (Northern part of Belgium) (Fig. S1) for vegetable crops with varying rooting depth and length of growing period. These experiments included lettuce and spinach (rooting depth appr. 30 cm), leek, carrots and cauliflower (rooting depth appr. 60 cm) and Brussels sprouts (rooting depth appr. 90 cm). In the lettuce field experiments a distinction was made between experiments with leaf lettuce (Lactuca sativa L. var. crispiflora, here varieties Lollo Rossa and Lollo Bionda) with a non-heading rosette of round fringed, crisp leaves and experiments with Romaine lettuce (Lactuca sativa L. var capitata) with broad curled leaves. Lettuce, spinach and cauliflower start to take up significant amounts of N 3–4 weeks after sowing or planting up to harvest, while significant N uptake starts much later for leek, carrots and Brussels sprouts, and strongly diminishes towards harvesting time for carrots and Brussels sprouts. The set-up of the experiments was comparable to those in D’Haene et al. (2014) and we refer to that paper for more detailed information. Here only a brief overview of materials and methods will be given.

Soil, crop and fertilisation data from the field experiments are given in Table 1. According to the Belgian textural triangle (Tavernier, 1949) the soil textures are sand and sandy loam. There was a wide range in soil organic matter (SOM) content to assure that the N dose response curves and hence the optimum N fertiliser application rates would be generally applicable.

For each vegetable crop studied, we calculated an N dose response curve for yield (marketable as well as total) and N uptake, RSMN and N surplus with the pooled data of the different experiments (see also D’Haene et al., 2014).

2.2. The soil mineral nitrogen balance

2.2.1. In- and outputs

Nitrogen in- and outputs as described in the SMNB method were quantified (Hofman et al., 1981; Neeteson, 1995; D’Haene et al., 2014) and the crop N surplus calculated as follows:

Table 1

<table>
<thead>
<tr>
<th>Crop</th>
<th>Number of experiments</th>
<th>Years</th>
<th>Range of soil organic carbon (%)</th>
<th>Mean rooting depth (cm)</th>
<th>Average sowing or planting date with standard deviation (Julian day)</th>
<th>Range of nitrogen fertilisation advice (kg effective N ha⁻¹)</th>
<th>Range of nitrogen fertiliser application rate (kg effective N ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf lettuce</td>
<td>7</td>
<td>2013–2014</td>
<td>1.1–2.0</td>
<td>30</td>
<td>161 ± 69</td>
<td>70–137</td>
<td>0–197</td>
</tr>
<tr>
<td>Lettuce</td>
<td>6</td>
<td>2013–2016</td>
<td>1.4–2.0</td>
<td>30</td>
<td>116 ± 58</td>
<td>71–155</td>
<td>0–221</td>
</tr>
<tr>
<td>Spinach</td>
<td>10</td>
<td>2013–2016</td>
<td>1.0–2.9</td>
<td>30</td>
<td>105 ± 49</td>
<td>164–233</td>
<td>0–350</td>
</tr>
<tr>
<td>Leek</td>
<td>9</td>
<td>2013–2016</td>
<td>1.1–3.6</td>
<td>60</td>
<td>148 ± 38</td>
<td>91–265</td>
<td>0–392</td>
</tr>
<tr>
<td>Carrots</td>
<td>5</td>
<td>2015–2016</td>
<td>0.9–2.9</td>
<td>60</td>
<td>118 ± 10</td>
<td>60–73</td>
<td>0–115</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>11</td>
<td>2009–2016</td>
<td>1.2–3.6</td>
<td>60</td>
<td>90 ± 28</td>
<td>124–295</td>
<td>0–386</td>
</tr>
<tr>
<td>Brussels sprouts</td>
<td>5</td>
<td>2015–2016</td>
<td>0.7–1.3</td>
<td>90</td>
<td>128 ± 11</td>
<td>190–260</td>
<td>0–363</td>
</tr>
</tbody>
</table>

* Leaf lettuce = Lactuca sativa L. var crispa and lettuce = Lactuca sativa L. var longifolia or capitata.

** Mainly varieties for processing industry.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات