Accepted Manuscript

European Union gas market development

Tobias Baltensperger, Rudolf M. Füchslin, Pius Krüti, John Lygeros

PII: S0140-9883(17)30239-6
Reference: ENEECO 3695

To appear in: Energy Economics

Received date: 16 December 2015
Revised date: 22 June 2017
Accepted date: 9 July 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
European Union gas market development

Tobias Baltenspergera,b,*, Rudolf M. Füchselc, Pius Krütia, John Lygerosb

aInstitute for Environmental Decisions (IED), ETH Zürich, 8092 Zürich, Switzerland
bAutomatic Control Laboratory (IFA), ETH Zürich, 8092 Zürich, Switzerland
cInstitute of Applied Mathematics and Physics (IAMP), ZHAW Zürich University of Applied Sciences, 8401 Winterthur, Switzerland

Abstract

The recently announced Energy Union by the European Commission is the most recent step in a series of developments aiming at integrating the European Union’s (EU) gas markets in order to increase social welfare and security of gas supply. Based on simulations with a spatial partial equilibrium model, we analyze the changes in consumption, prices, and social welfare up to 2022 induced by the infrastructure expansions planned for this period, for the current market, as well as for three hypothetical scenarios: a halt of Russian gas deliveries to the EU during the winter period (\textit{RU-}); a simultaneous doubling of available LNG (\textit{LNG+}); and for \textit{Brexit}, in which the United Kingdom market is isolated from the EU. In the case of the current market, the new infrastructure leads to a slight decrease of wholesale prices. Moreover, the potential of suppliers to exert market power decreases significantly, particularly in the Baltic states and Finland which are the most exposed countries today, and consumer surplus increases by 17.4\% in the EU. In the \textit{RU-} scenario, consumer surplus decreases across Europe, with the largest losses occurring in the Baltic states, as well as in Finland, Poland and Romania. In the \textit{LNG+} scenario, the gains in consumer surplus are primarily found in Western Europe. However, the planned infrastructure expansions distribute the gains and losses in consumer surplus more evenly over all EU member states, with the exception of Romania. In the \textit{Brexit} scenario, consumer surplus decreases by up to 5.1\% in the United Kingdom, 19.2\% in Ireland, and 3.6\% in the other EU countries. Our results allow us to distinguish three categories of projects: (i) Change in gas availability, leading to a general increase or decrease of social welfare all over the EU. The only project increasing social welfare in all scenarios in most countries is the Trans-Anatolian Gas Pipeline (TANAP); (ii) Existing gas sources made available to additional countries. This leads to an increase of social welfare in the newly connected countries, while social welfare drops slightly everywhere else; (iii) Projects with a marginal effect on the market. Most notably, the recently announced Turkish Stream falls into this category. Our results indicate that

*Corresponding author.

Email address: t.baltensperger@gmail.com (Tobias Baltensperger)
دریافت فوری
متن کامل مقاله
امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات