The structure of the labor market, telecommuting, and optimal peak period congestion tolls: A numerical optimization model

Bruno De Borger a,⁎, Bart Wuyts b

a Department of Economics, University of Antwerp, Belgium
b Department of Economics, University of Antwerp and national railroad company (NMBS), Brussels, Belgium

ARTICLE INFO

Article history:
Received 16 March 2010
Received in revised form 23 December 2010
Accepted 18 February 2011
Available online 26 February 2011

JEL classification:
D62
H21
R41

Keywords:
Congestion taxes
Competitive labor markets
Wage bargaining
Telecommuting

ABSTRACT

This paper extends a standard model of welfare optimal peak-period congestion tolls to take into account two characteristics of typical European labor markets, viz. wage bargaining and the increasing potential of telecommuting as an alternative to working on-the-job. Specifically, we consider the government’s problem of determining optimal labor and peak-period transport taxes under two different labor market structures, viz., a competitive labor market and a wage bargaining setting. The models include commuting and non-commuting transports, and they allow for telecommuting. We implement the models numerically using Belgian data. Results include the following. First, if union preferences reflect the transport concerns of their members, we find that optimal congestion taxes under competitive labor market conditions exceed those under bargaining by 10–17%. Second, the combination of substantially higher transport taxes and lower labor taxes compared to the reference situation jointly implies that the optimal tax structure strongly stimulates telecommuting for both labor market structures considered. Third, it is found that improving the efficiency of telecommuting results in a considerable reduction of optimal congestion tolls.

1. Introduction

The economic and social consequences of congestion have been widely recognized by economists, and an abundant literature on policies to alleviate congestion has been developed. As many of these policies advocate the introduction of some form of congestion tax, a large number of studies has analyzed first-best and second-best optimal congestion pricing (see, among many others, Keeler and Small, 1977, Kraus, 1989, Arnott et al., 1993, and Verhoef et al., 1995). Moreover, as the technology required to implement congestion pricing is now available, a number of cities have actually introduced at least some form of congestion charge (Singapore, Trondheim, Stockholm, and London), and many others are seriously considering or preparing its introduction.

Of course, a large fraction of rush hour traffic consists of commuting trips, and policy-makers have expressed some concern about the potential negative employment effects of introducing congestion charges. For many workers, congestion charges raise the cost of commuting to work and hence reduce the net benefits of employment, so that a reduction in labor supply is to be expected. Not surprisingly, a number of recent studies have focused on the close relation between commuting, congestion and the labor market. In a seminal paper, Parry and Bento (2001) assumed competitive labor markets and perfect complementarity between commuting and labor supply. They studied revenue-neutral increases in congestion taxes, whereby the transport tax revenues are recycled through a reduction in the labor tax. They showed that the feedback effects of congestion improve the employment implications of such a transport tax reform, because the reduction in congestion raises the net return to working, making working more attractive relative to leisure. At low levels of the congestion tax, the employment effect of a revenue neutral congestion tax is in fact positive, rather than negative.

Several studies extended the initial approach of Parry and Bento (2001). For example, Van Dender (2003) introduced different trip purposes into the model (commuting and non-commuting) and studied optimal taxes on labor and transport markets, allowing for tax differentiation between commuting trips and other trips. His numerical results show that the labor supply implications of congestion taxes on commuters provide an argument in favor of lower taxes on commuting than on other trip purposes. More recently, Gutiérrez-i-Puigarnau and van Ommeren (2010) distinguish two margins of adjustment in the overall labor supply decisions of individuals, viz. the number of days

⁎⁎ We are grateful to Kurt Van Dender, Stef Proost and Jos van Ommeren for useful discussions on the topic. The detailed critical comments of an anonymous referee and the suggestion of the editor to narrow the focus of the paper greatly improved the final version.

⁎ Corresponding author.
E-mail address: bruno.deborger@ua.ac.be (B. De Borger).

0166-0462/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
people work per month and the number of hours they work per day. Their empirical results suggest that individuals’ choices of how many days to work per month (and hence commuting demand) and how many hours to work per day respond quite differently to transport and labor tax changes. A transport tax increase may not so much reduce overall labor supply, but rather lead to working more hours per day and fewer days per month.

The models referred to above provided important insights into the relation between the transport and labor markets; however, they largely ignored several common features of European labor markets. First, in many countries, the labor market is highly unionized, and wages and employment are the result of negotiations between employer organizations and labor unions. If unions care about the workers they represent and if these workers suffer from congestion or face congestion tolls on their journey-to-work, one expects these issues to come up at the negotiation table, where wage adjustments are discussed with employers.2 In a recent theoretical paper, De Borger (2009) reconsiders the problem of peak period congestion taxes in a model that captures the main ingredients of such a wage bargaining setting.3 He shows that optimal congestion taxes strongly tax wages in a model that captures the main ingredients of such a wage bargaining. The model implies that commuting does not affect negotiated wages and employment. In a recent paper, Van Ommeren documents the effect of congestion and congestion taxes on wage negotiation outcomes on the labor market. De Borger (2009) does report some anecdotal evidence that suggests unions indeed care about the commuting costs of their members.

Analyzing the effects of optimal taxation and tax reform within the framework of wage bargaining models has a long tradition in the literature on environmental taxation (see, among many others, Schneider, 1987; Strand, 1999; Bayindir-Upmann and Raith, 2003 and Schöl, 2005). Unlike congestion, however, environmental externalities do not generate feedback effects on demand, so that the externality itself does not affect negotiated wages and employment. In a recent paper, Van Ommeren and Rietveld (2005) studied commuting in a search model of the labor market where wages are determined through wage bargaining. The model implies that commuting time and commuting costs both affect equilibrium wages, and it explains the “commuting time paradox”—i.e., the stability of average commuting times over extended periods of time. It does not include congestion, however, and the paper is not concerned with taxation.

Telework means that the worker partly works at home or at some place other than the workplace, using information and communication technology for that purpose. Telecommuting implies the actual substitution of the commuting trip. Although in many cases the implications for the demand for transport will be the same, this obviously need not be the case. See, for example, De Graaff and Rietveld (2007) and Salomon and Mokhtarian (2008).

2 There is not yet, to the best of our knowledge, empirical evidence available that documents the effect of congestion and congestion taxes on wage negotiation outcomes on the labor market. De Borger (2009) does report some anecdotal evidence that suggests unions indeed care about the commuting costs of their members.

3 Analyzing the effects of optimal taxation and tax reform within the framework of wage bargaining models has a long tradition in the literature on environmental taxation (see, among many others, Schneider, 1987; Strand, 1999; Bayindir-Upmann and Raith, 2003 and Schöl, 2005). Unlike congestion, however, environmental externalities do not generate feedback effects on demand, so that the externality itself does not affect negotiated wages and employment. In a recent paper, Van Ommeren and Rietveld (2005) studied commuting in a search model of the labor market where wages are determined through wage bargaining. The model implies that commuting time and commuting costs both affect equilibrium wages, and it explains the “commuting time paradox”—i.e., the stability of average commuting times over extended periods of time. It does not include congestion, however, and the paper is not concerned with taxation.

Telework means that the worker partly works at home or at some place other than the workplace, using information and communication technology for that purpose. Telecommuting implies the actual substitution of the commuting trip. Although in many cases the implications for the demand for transport will be the same, this obviously need not be the case. See, for example, De Graaff and Rietveld (2007) and Salomon and Mokhtarian (2008).

4 Telework means that the worker partly works at home or at some place other than the workplace, using information and communication technology for that purpose. Telecommuting implies the actual substitution of the commuting trip. Although in many cases the implications for the demand for transport will be the same, this obviously need not be the case. See, for example, De Graaff and Rietveld (2007) and Salomon and Mokhtarian (2008).

5 It should be noted that, in a more general framework, telecommuting may have some unexpected side effects. For example, Safirova (2002) studied the potential role of telecommuting in reducing commuting and peak-period congestion in a general equilibrium framework, allowing for agglomeration effects. She finds that the presence of telecommuting may well imply that taxing congestion at marginal external cost reduces, rather than raises, welfare. The intuition is that congestion tolls increase telecommuting demand, which reduces the agglomeration potential of the economy.
دریافت فوری

متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات