Accepted Manuscript

Water footprint of Jing-Jin-Ji urban agglomeration in China

Dandan Zhao, Yu Tang, Liu Junguo, Martin R. Tillotson

PII: S0959-6526(17)31433-6
DOI: 10.1016/j.jclepro.2017.07.012
Reference: JCLP 10014

To appear in: Journal of Cleaner Production

Received Date: 20 December 2016
Revised Date: 25 May 2017
Accepted Date: 3 July 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Water footprint of Jing-Jin-Ji urban agglomeration in China

Dandan Zhaoa, Yu Tangb*, Liu Junguoc, a*, Martin R Tillotsona,d

a School of Nature Conservation, Beijing Forestry University, Beijing 100083, China, dan7654321@126.com
b Graduate School, South University of Science and Technology of China, Shenzhen, 518055, China, tangyu@sustc.edu.cn
c School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055, China, junguo.liu@gmail.com; liujg@sustc.edu.cn
d water@leeds, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom, m.r.tillotson@leeds.ac.uk

*Corresponding author. Tel/fax+86 755 8801 8012
Email address: junguo.liu@gmail.com; liujg@sustc.edu.cn

Abstract

A rapidly expanding economy and increasing water demand for agricultural and industrial production is placing enormous stress on water quantity and the aquatic environment in Northern China, especially the so-called Jing-Jin-Ji (Beijing-Tianjin-Hebei) urban agglomeration, home to over 110 million people producing 10% of China’s overall GDP. Several studies have focused on energy consumption, air pollution, CO$_2$ emissions and regional blue water footprint (WF) following release of the Jing-Jin-Ji Integration Strategy by the China government in 2013. However, a comprehensive assessment distinguishing blue, green and grey WF amongst different industrial sectors, ascertaining how WF transfers internally and beyond the region and final demand consumption is not available. We consider this to be crucial in understanding and addressing the deteriorating water situation in the Jing-Jin-Ji. In this study, we quantified the WF and virtual water flow on a sectoral basis for the year 2010 through coupling the multi-regional input-output model (MRIO) with WF assessment. The results showed that Beijing and Tianjin are net importers of green, blue and grey water from Hebei and other China provinces to support their needs. Conversely, Hebei exports all WF colors to Beijing, Tianjin and other provinces in China, and more than 60% of WF is transferred as virtual water. For the overall Jing-Jin-Ji region a small amount of blue water (2,086 million m3) is exported, but huge amounts of green water (15,573 million m3) and grey water (30,620 million m3) are outsourced. A “Virtual Water Strategy” is one measure which could alleviate water stress at the regional scale, with consideration of financial compensation from water receiving regions made to water supplying regions in the context of achieving water management targets. We also found that physical water transfer to Jing-Jin-Ji could not balance virtual blue water exports, not to mention compensating for internal water...
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات