Contents lists available at ScienceDirect

Building and Environment

journal homepage: www.elsevier.com/locate/buildenv

An ice rink floor thermal model suitable for whole-building energy simulation analysis

Junghyon Mun, Moncef Krarti*

Department of Civil, Environmental, and Architectural Engineering, CB 428, University of Colorado, Boulder, CO 80309, USA

ARTICLE INFO

Article history: Received 29 August 2010 Received in revised form 13 November 2010 Accepted 16 November 2010 Available online 1 December 2010

Keywords: EnergyPlus Experimental analysis Ice rink floor system Small scale module Transfer function

ABSTRACT

This paper presents a thermal model for an ice rink floor system that is integrated into EnergyPlus, a whole-building energy simulation tool, to improve design, evaluation, and operation of ice rink facilities. The developed ice rink floor thermal model, based on the conduction transfer function method, is validated against experimental data obtained under laboratory testing conditions. Two control strategies for indoor ice rink floor systems were modeled and evaluated including a brine temperature control strategy and an ice surface temperature control strategy.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Ice rink arenas are among the most energy intensive entertainment facilities with annual energy consumption of 750 kWh/ m^2 , almost 3 times the energy use intensity of office buildings [1]. There are several thousands of indoor ice rinks in North America used for various spectator events and recreational activities such as hockey games, figure skating, or public skating. Most of the arenas are operated continuously for over 8 months to 11 months per year and thus consume significant levels of energy when compared to other recreational facilities. According to a DOE report, a typical indoor ice rink arena in Massachusetts had an average electric consumption of 730 MWh which accounted for \$70,500 in 2010 for just a 7–8 months season [2]. Another study showed that the energy costs to operate an ice rink facility in Canada for 8 months are on average \$86,000 [3]. According to the international ice hockey technical guides, the energy consumption by three ice skating rinks in Europe ranges from 900 to 1500 MWh/year and the average energy bill can range from \$50,000 to \$90,000 [4]. Unfortunately, there is no clear guidelines and analysis tools to help improve the energy performance of ice rinks. In particular, it is difficult to estimate refrigeration load and energy use of ice rinks

* Corresponding author. E-mail address: moncef.krarti@colorado.edu (M. Krarti). using currently available whole-building energy simulations due to lack of detailed models for ice rink floor systems.

Early numerical and experimental analysis studies of indoor ice rink arenas were usually focused on indoor air quality [5]. Recently, ASHRAE has sponsored a research project to better estimate ice sheet cooling loads [6]. In particular, a numerical analysis was performed as part of this project to estimate daily heat flux profiles at the ice sheet surface under steady and periodic meteorological conditions [7,8]. As an extension of this ASHRAE project, a zonal model is developed to calculate thermal interactions between indoor air and ice sheet surface within an ice rink arena. This zonal model is used with TRNSYS to estimate annual energy consumption for ice arenas [9–11]. However, the model is a standalone algorithm and cannot be easily implemented in a whole-building simulation program.

The main objective of the work presented in this paper, is to develop a detailed heat transfer model for a typical ice rink floor suitable for integration within a whole-building simulation tool. While existing models [6–11] can estimate heat transfer along the ice sheet surface, they do not consider thermal coupling of the ice rink floor system with its surroundings. In this paper, a thermal model for the ice rink floor system is developed to account for thermal interactions between the floor system, ground, and ambient air of the indoor arena. Moreover, the developed ice rink floor system model was integrated into a state-of-the art energy analysis simulation program, EnergyPlus, to assess energy performance of ice rink facilities under various design and operating conditions.

^{0360-1323/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.buildenv.2010.11.008

	Nomenclature		Cl	defined as $C_l = C_h + \{C_i \cdot (C_c + C_b \cdot C_f) + C_j \cdot (C_f + C_e \cdot C_c)\}/$
	Α	area of brine pipe surface [m ² (ft ²)]	Ср	specific heat for the brine $[]/kg K (Btu/lb °F)]$
	Area	area of ice surface $[m^2 (ft^2)]$	ĊTF	conduction transfer function method
	C_a	coefficients associated with the heat balance at the	QTF	conduction transfer function method with heat source/
		inside surface as defined in Equation (4) including	-	sink
		solar, long wave radiation exchange, and conduction	F_m	flux CTF coefficient, $m = 0, 1,, k$.
		history terms, for example [°C (°F)]	т	brine mass flow rate [kg/s (lb/h)]
	C_b	current cross Conduction Transfer Function term as	$q^{\prime\prime}$	surface heat balance including radiation from other
		defined in Equation (4)		surfaces, solar radiation, and convection heat flux on
	C_c	coefficients associated with the current heat source/		the inside surface [W/m ² (Btu/h ft ²)]
1		sink as defined in Equation (4) [m ² °C/W (ft ² h °F/Btu)]	$q_{\rm source}$	heat flux from the heat source/sink (i.e., embedded
	C_d	coefficients associated with the heat balance at the		pipes with the ice rink floor) $[W/m^2 (Btu/h ft^2)]$
1		outside surface as defined in Equation (5) including	T _{b.in}	inlet brine temperature [°C (°F)]
1		solar, long wave radiation exchange, and conduction	T _{b.out}	outlet brine temperature [°C (°F)]
1		history terms, for example [°C (°F)]	T_i	inside face temperature [°C (°F)]
	Ce	current cross Conduction Transfer Function term as	To	outside face temperature [°C (°F)]
		defined in Equation (5)	T_s	temperature at the location of the source/sink [°C (°F)]
	C_{f}	coefficients associated with the current heat source/	X_m	inside CTF coefficient, $m = 0, 1,, M$.
1		sink as defined in Equation (5) [m ² °C/W (ft ² h °F/Btu)]	Y_m	cross CTF coefficient, $m = 0, 1,, M$.
1	C_g	sum of temperature and source history terms at the	W_m	QTF inside term for the heat source/sink, $m = 0,1,,M$.
		source/sink location as defined in Equation (9) [°C (°F)]	Е	effectiveness of the heat exchanger
1	C_h	coefficients associated with the current heat source/		
		sink as defined in Equation (9) [m ² °C/W (ft ² h °F/Btu)]	Indices	
	C_i	inside term for the current inside surface temperature	i	inside
		as defined in Equation (9)	0	outside
	C_j	CTF outside term for the current outside surface	b	brine
		temperature as defined in Equation (9)	t	current time step
	C_k	is defined as $C_k = C_g + \{C_i (C_a + C_b \cdot C_d) + C_j\}$		
1		$(C_d + C_e \cdot C_a) / (1 - C_e \cdot C_b) [\circ C (\circ F)]$		

2. Ice rink floor model description

An ice rink floor system model using the conduction transfer function (CTF) method was developed based on the low temperature radiation cooling system model currently available in EnergyPlus [12].

Similar to the EnergyPlus low temperature radiation cooling system model, heat sink terms were introduced to estimate the thermal load associated with the embedded pipes inside the ice rink floor. In order to form and maintain the ice sheet, the ice rink floor system was served by a refrigeration system that may include several chillers and pumps. The quality of the ice sheet was ensured through a control system to maintain the fluid inside the pipes within predefined set-point temperatures.

The ice rink floor system model differed from that of the low temperature radiation cooling system modeled in EnergyPlus in several aspects as noted below [12]:

- First, ice rink floor system used a brine solution with temperatures that were usually below zero. On the other hand, the low temperature radiation cooling system uses water with higher temperatures that are above 0°C. In EnergyPlus, most systems are designed to use fluids operating above freezing temperatures.
- Second, low temperature radiation cooling systems are intended to control room air temperature. The ice rink floor model, however, is used to control ice layer surface temperature or outlet brine temperature.
- Third, a radiation cooling system includes HVAC equipment that is used to remove thermal load from one zone or several zones. However, the ice floor rink floor system was independent from the zone air control system and could actually contribute to the zone heating/cooling loads.

	$(1 - C_e \cdot C_b) [m^2 \circ C/VV (\Pi^2 \Pi \circ F/Btu)]$
Ср	specific heat for the brine [J/kg K (Btu/lb °F)]
CTF	conduction transfer function method
QTF	conduction transfer function method with heat source/
	sink
F_m	flux CTF coefficient, $m = 0, 1,, k$.
т	brine mass flow rate [kg/s (lb/h)]
$q^{\prime\prime}$	surface heat balance including radiation from other
	surfaces, solar radiation, and convection heat flux on
	the inside surface [W/m ² (Btu/h ft ²)]
$q_{\rm source}$	heat flux from the heat source/sink (i.e., embedded
	pipes with the ice rink floor) [W/m ² (Btu/h ft ²)]
T _{b.in}	inlet brine temperature [°C (°F)]
T _{b.out}	outlet brine temperature [°C (°F)]
T_i	inside face temperature [°C (°F)]
To	outside face temperature [°C (°F)]
T_s	temperature at the location of the source/sink $[\circ C (\circ F)]$
X_m	inside CTF coefficient, $m = 0, 1,, M$.
Y_m	cross CTF coefficient, $m = 0,1,,M$.
W_m	QTF inside term for the heat source/sink, $m = 0, 1,, M$.
ε	effectiveness of the heat exchanger
Indices	
1	inside
0	outside
b	brine
t	current time step

Due to these differences, several challenges needed to be considered when developing an ice rink floor system model suitable for integration into a detailed whole-building simulation program such as EnergyPlus. A brief outline of the developed ice rink floor model is provided in the following sections.

Like the low temperature radiant system model, the ice rink floor system model has two algorithms. The first algorithm calculates temperatures and heat fluxes through the floor structure including the heat sinks/sources. The second algorithm predicts temperatures and heat fluxes at the source/sink location.

The low temperature radiant system model integrated in EnergyPlus uses the conduction transfer function technique with heat sources or sinks as expressed in the following equations [11–13]:

$$q_{i,t}'' = \sum_{m=1}^{M} X_m T_{i,t-m+1} - \sum_{m=1}^{M} Y_m T_{o,t-m+1} + \sum_{m=1}^{k} F_m q_{i,t-m}'' + \sum_{m=1}^{M} W_m q_{\text{source},t-m+1}$$
(1)

From the above equation, the inner and outer surface temperatures can be estimated as follows:

$$\begin{split} T_{i,t} &= \left(-\frac{1}{X_1} \sum_{m=2}^{M} X_m T_{i,t-m+1} + \frac{1}{X_1} \sum_{m=2}^{M} Y_m T_{o,t-m+1} \right. \\ &- \frac{1}{X_1} \sum_{m=1}^{k} F_m q_{i,t-m}'' + \frac{q_{i,t}''}{X_1} - \frac{1}{X_1} \sum_{m=1}^{M} W_m q_{\text{source},t-m+2} \right) \\ &+ \left(\frac{Y_1}{X_1} \right) T_{o,t} + \left(\frac{W_1}{X_1} \right) q_{\text{source},1} \end{split}$$
(2)

دريافت فورى 🛶 متن كامل مقاله

- امکان دانلود نسخه تمام متن مقالات انگلیسی
 امکان دانلود نسخه ترجمه شده مقالات
 پذیرش سفارش ترجمه تخصصی
 امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
 امکان دانلود رایگان ۲ صفحه اول هر مقاله
 امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
 دانلود فوری مقاله پس از پرداخت آنلاین
 پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات
- ISIArticles مرجع مقالات تخصصی ایران