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a b s t r a c t

The concept of particle swarms originated from the simulation of the social behavior com-
monly observed in animal kingdom and evolved into a very simple but efficient technique
for optimization in recent past. Since its advent in 1995, the Particle Swarm Optimization
(PSO) algorithm has attracted the attention of a lot of researchers all over the world result-
ing into a huge number of variants of the basic algorithm as well as many parameter selec-
tion/control strategies. PSO relies on the learning strategy of the individuals to guide its
search direction. Traditionally, each particle utilizes its historical best experience as well
as the global best experience of the whole swarm through linear summation. The Compre-
hensive Learning PSO (CLPSO) was proposed as a powerful variant of PSO that enhances the
diversity of the population by encouraging each particle to learn from different particles on
different dimensions, in the metaphor that the best particle, despite having the highest fit-
ness, does not always offer a better value in every dimension. This paper presents a variant
of single-objective PSO called Dynamic Neighborhood Learning Particle Swarm Optimizer
(DNLPSO), which uses learning strategy whereby all other particles’ historical best infor-
mation is used to update a particle’s velocity as in CLPSO. But in contrast to CLPSO, in DNL-
PSO, the exemplar particle is selected from a neighborhood. This strategy enables the
learner particle to learn from the historical information of its neighborhood or sometimes
from that of its own. Moreover, the neighborhoods are made dynamic in nature i.e. they are
reformed after certain intervals. This helps the diversity of the swarm to be preserved in
order to discourage premature convergence. Experiments were conducted on 16 numerical
benchmarks in 10, 30 and 50 dimensions, a set of five constrained benchmarks and also on
a practical engineering optimization problem concerning the spread-spectrum radar poly-
phase code design. The results demonstrate very competitive performance of DNLPSO
while locating the global optimum on complicated and multimodal fitness landscapes
when compared with five other recent variants of PSO.

� 2012 Published by Elsevier Inc.

1. Introduction

In its simplest form, an unconstrained D-dimensional real-parameter optimization problem can be formulated as a search
for the optimal parameter vector ~X�, which minimizes an objective function Fð~XÞðF : X # RD ! RÞ i.e. Fð~X�Þ < Fð~XÞ for all
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~X 2 X, where X is a non-empty large finite set serving as the domain of the search. For an unconstrained optimization prob-
lem, X 2 RD. Since maxfFð~XÞg ¼ �minf�Fð~XÞg, the restriction to minimization is without loss of generality. In general, the
optimization task is complicated by the existence of non-linear objective functions with multiple local minima. A local min-
imum F‘ ¼ Fð~X‘Þ may be defined as: 9e > 08~X 2 X : k~X �~X‘k < e) F‘ 6 Fð~XÞ, where k�k indicates any p-norm distance
measure.

Real-parameter optimization problems are rife in different fields of engineering, social and physical sciences and many of
them pose severe challenge to the classical derivative-based techniques. This fact has led the researchers to develop various
optimization techniques founded on the simulation of natural phenomena. Some of the real parameter optimizers that are in
wide use these days are Genetic Algorithm (GA) [14], Simulated Annealing (SA) [21], Tabu Search (TS) [13], Covariance Ma-
trix Adaptation Evolution Strategies (CMA-ESs) [15], Teaching–Learning-Based Optimization [32,33], Harmony Search [38],
Immune Algorithm [40], Differential Evolution (DE) [5,43], and Particle Swarm Optimization (PSO) [8]. PSO [2,8,10,20] marks
one of the most popular classes of nature-inspired optimizers and has its roots in artificial life and social psychology. In fact,
it emulates the flocking behavior of birds and fish schooling. PSO has become very popular these days as an efficient algo-
rithm for intelligent search and optimization. It does not require any gradient information of the function to be optimized,
uses only primitive mathematical operators, and is conceptually very simple. Since its inception in 1995, PSO has attracted a
great deal of attention of the researchers all over the globe resulting into nearly uncountable number of variants of the basic
algorithm, theoretical and empirical investigations of the dynamics of the particles, parameter selection and control, and
applications of the algorithm to a wide spectrum of real world problems from diverse fields of science and engineering.
For a comprehensive knowledge on the foundations, perspectives, and applications of PSO, see [1,3,6,9,18,22,37].

PSO is, however, not free from premature convergence, especially over multimodal, rugged, and non-separable fitness
landscapes. Several PSO-variants were proposed by the researchers over the past decade to circumvent these problems
and make PSO more efficient as a black-box optimizer over the continuous search space for real parameter optimization
problems. Some of the most significant variants of PSO that attracted much interest from the researchers in recent past
are Comprehensive Learning PSO (CLPSO) [24], Dynamic Multi-Swarm PSO (DMSPSO) [23], Fully Informed Particle Swarm
(FIPS) [26], Unified PSO (UPSO) [30], Adaptive PSO (APSO) [42], scale-free FIPS [45], Orthogonal Learning PSO (OLPSO)
[41], etc. In addition, there are several hybrid PSO variants, which incorporate tested methods of other algorithms with
PSO, such as GA-PSO [29], Evolutionary PSO (EPSO) [27], DE-PSO [34], and C-PSO [16].

In this paper, we present an improved variant of the CLPSO algorithm, called Dynamic Neighborhood Learning PSO (DNL-
PSO), for the purpose of solving single-objective optimization problems. CLPSO uses a novel learning strategy whereby all
other particles’ historical best information is used to update a particle’s velocity. In order to achieve a better balance of
the explorative and exploitative behaviors of CLPSO, we incorporated a few novel strategies regarding the selection of the
exemplar particles that contribute to the velocity updating of the other learning particles in the swarm. By the consistent
updating of their velocities in course of the algorithm, all the particles tend to reach better solutions and eventually converge
to an optimal solution. The learning strategies which we have incorporated in the proposed algorithm are as follows:

(1) The learner particle learns not only from its own experience, but also from the experience of the particles in the
swarm. However, unlike CLPSO, the exemplar particles are not chosen randomly, but from a predefined neighborhood,
thus making the particles diverse enough for yielding good results.

(2) The neighborhood of the learner particles have been made dynamic in nature i.e. the entire swarm is regrouped into a
number of neighborhoods after certain intervals. This enhances the explorative nature of the algorithm and thus helps
the particles to come out from local optima in case of premature convergence.

Rest of the article is organized in the following way: Section 2 provides an overview of the PSO family of algorithms and
also discusses the CLPSO algorithm. In Section 3, the proposed DNLPSO is discussed in sufficient details. Section 4 provides a
theoretical analysis of the explorative power of the algorithm justifies the motivation of the method. Effects of control
parameters on the performance of DNLPSO are presented in Section 5. The experimental results on numerical unconstrained
and constrained benchmarks as well as a practical engineering optimization problem are presented and discussed in Section
6. Finally Section 7 concludes the paper.

2. An overview of classical PSO and CLPSO

In PSO, each solution vector is known as a particle and several such particles collectively form a swarm. Each member in
the swarm adapts its search patterns by learning from its own experience as well as other particles. The particle has a ten-
dency to move towards a better search area with a definite velocity determined by the information collected by the particle
over the course of the search process. While searching in a D-dimensional hyperspace, each particle i has a velocity vector
Vi ¼ v1

i ;v2
i ; . . . ;vD

i

� �
and a position vector Xi ¼ x1

i ; x
2
i ; . . . ; xD

i

� �
to indicate its current state where iis a positive integer indexing

the particle in the swarm and D is the dimension of the problem under study. Moreover, particle i will keep its personal his-

torical best position vector pbesti ¼ pbest1
i ; pbest2

i ; . . . :; pbestD
i

h i
. The best position of all the particles is gbest = [gbest1,g-

best2, . . . ,gbestD]. The vectors Vi and are Xi initialized randomly and are updated by using the following formulae:
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