Intuitions for phonological constraints in binomials: A psycholinguistic investigation

Viola Green, a,*, David Birdsong b

a Georgia Institute of Technology, School of Modern Languages, Swann Building, 613 Cherry Street, Atlanta, GA 30332, USA
b Department of French and Italian, The University of Texas at Austin, 201W 21st, Street STOP B7600, HRH 2.114A, Austin, TX 78712 USA

1. Introduction

Although research in linguistics is focused on propositional language (Wittgenstein, 1953), the importance of formulaic language has been recognized by many (Ellis, 1996; Wood, 2002; Wray, 2002). Formulaic language (also known as non-propositional language, prefabricated sequences, etc.) encompasses various kinds of multiword units, such as idioms, proverbs, conventional expressions, clichés, expletives, and – the object of this study – binomials. It is hypothesized that formulaic sequences, unlike propositional language which is composed of multiple, syntactically organized symbolic units, are stored, retrieved and processed holistically, as a single, invariant unit (Wray, 2002). Van Lancker-Sidtis (2004) has summarized studies which suggest that different mechanisms underlie the production and comprehension of propositional...
vs. formulaic language. For example, work on aphasic patients has shown that various prefabricated sequences, such as fillers, conventional expressions, and expletives are preserved even in cases of severe aphasia (Van Lancker-Sidtis, 2004), while the ability to construct novel utterances is gravely damaged.

Formulaic language is notoriously difficult for the nonnative speaker (NNS) to master in a second language (L2) (see, e.g., Abrahamsson and Hyltenstam, 2009). Indeed, while multiword units are a characteristic feature of the language of a native speaker (NS), and contributes to its naturalness, precision and idiomaticity, NNSs tend to not only use fewer multiword units, they also tend to have inaccurate representations of their phonological and syntactic shape, thus, lacking nativelikeness in their perception and production (Granger, 1998; Pawley & Syder, 1983; Van Lancker-Sidtis, 2004; Wray, 2002; Yorio, 1989).

Edmonds (2014), arguing for the significance of formulaic language, observes that prefabricated sequences are pervasive in speech and writing, and are earmarks of communicative competence. In this vein, Ellis (1996) asserts that “speaking natively is speaking idiomatically using frequent and familiar collocations…” (p. 97). An additional benefit of using multiword expressions is a lighter cognitive load and a facilitated fluency (Van Lancker-Sidtis, 2004; Wood, 2002; Wray, 2002).

The present study concentrates on a specific kind of formulaic language – binomials – with particular attention to their phonological characteristics in English and French. Collocations, idioms and other prefabricated units often exhibit salient phonological features, such as alliteration, rhyme, and specific intonational contours. Binomials exhibit phonological features that are common in poetry and verbal art (rhyme, contrastive vowels, alliteration), or as Southern (2000) puts it: “Their semantic and categorical joints are lubricated by internal phonetic association” (p. 256). Studies on the phonology of binomials (Birdsong, 1979; Cooper and Ross, 1975; Minkova, 2002) tend to agree on a certain naturalness and “right-soundingness” or euphony of their acoustic shape. Thus, the felicitous phonic characteristics of *dilly-dally* make the sequence “sound better” than *daily-daily*.

Although the idea that acoustic aesthetics underlies linguistic form collides with the essential arbitrary nature of the linguistic sign, it is nevertheless consistent with Firth’s (1930; 1937) understanding of the phonesthetic character of language, and scholars such as Westcott (1971) and Pinker (2007: 300-303; 338-339) have detailed the non-arbitrary patternings of phonic sequences in words and expressions in English. Similarly, it is widely recognized that, across languages, certain sounds are productively associated with proximal vs. distal deixis (Tanz, 1980), and with small vs. large size (Sapir, 1929; Ultan, 1978), while vowel alternations exemplified by *tick-tock*, *see-saw*, *pitter-patter*, etc. have been identified as sound-symbolic (Blake, 2017).

We emphasize, however, that in this study we do not examine binomials for their putative sound symbolic value. Rather, we are concerned with the phonetic rules or constraints that govern the irreversible ordering of constituents in binomials. Language users may have intuitions for these rules, and may be able to judge what sounds right and what doesn’t sound right in nonce sequences such as *resker* and *tesker* vs. *tesker* and *resker*; *kizzy-krizzy* vs. *krizy-kizzy*; *fibster* and *feabster* vs. *feabster* and *fibster*). Thus, our aim in this study is to investigate the degree to which people’s intuitions for what sounds right in binomials are non-arbitrary, thereby looking for evidence that “aesthetic judgments are not random, but clearly conform to a pattern” (Oakeshott-Taylor, 1984, p. 236).

Relatedly, Van Lancker-Sidtis (2004) reports on several psycholinguistic studies that compared natives’ and nonnatives’ abilities to recognize idiomatic expressions by their prosodic contours in a context-free environment. In some studies, significant differences between NSs and NNSs were found: NSs are on average more accurate than NNSs in identifying idiomatic expressions by their intonational contours. Binomials exhibit phonological features associated with proximal vs. distal deixis (Tanz, 1980), and with small vs. large size (Sapir, 1929; Ultan, 1978), while vowel alternations exemplified by *tick-tock*, *see-saw*, *pitter-patter*, etc. have been identified as sound-symbolic (Blake, 2017).

We emphasize, however, that in this study we do not examine binomials for their putative sound symbolic value. Rather, we are concerned with the phonetic rules or constraints that govern the irreversible ordering of constituents in binomials. Language users may have intuitions for these rules, and may be able to judge what sounds right and what doesn’t sound right in nonce sequences such as *resker* and *tesker* vs. *tesker* and *resker*; *kizzy-krizzy* vs. *krizy-kizzy*; *fibster* and *feabster* vs. *feabster* and *fibster*). Thus, our aim in this study is to investigate the degree to which people’s intuitions for what sounds right in binomials are non-arbitrary, thereby looking for evidence that “aesthetic judgments are not random, but clearly conform to a pattern” (Oakeshott-Taylor, 1984, p. 236).

Relatedly, Van Lancker-Sidtis (2004) reports on several psycholinguistic studies that compared natives’ and nonnatives’ abilities to recognize idiomatic expressions by their prosodic contours in a context-free environment. In some studies, significant differences between NSs and NNSs were found: NSs are on average more accurate than NNSs in identifying idiomatic expressions by their intonational contours. Binomials exhibit phonological features associated with proximal vs. distal deixis (Tanz, 1980), and with small vs. large size (Sapir, 1929; Ultan, 1978), while vowel alternations exemplified by *tick-tock*, *see-saw*, *pitter-patter*, etc. have been identified as sound-symbolic (Blake, 2017).

We emphasize, however, that in this study we do not examine binomials for their putative sound symbolic value. Rather, we are concerned with the phonetic rules or constraints that govern the irreversible ordering of constituents in binomials. Language users may have intuitions for these rules, and may be able to judge what sounds right and what doesn’t sound right in nonce sequences such as *resker* and *tesker* vs. *tesker* and *resker*; *kizzy-krizzy* vs. *krizy-kizzy*; *fibster* and *feabster* vs. *feabster* and *fibster*). Thus, our aim in this study is to investigate the degree to which people’s intuitions for what sounds right in binomials are non-arbitrary, thereby looking for evidence that “aesthetic judgments are not random, but clearly conform to a pattern” (Oakeshott-Taylor, 1984, p. 236).

Relatedly, Van Lancker-Sidtis (2004) reports on several psycholinguistic studies that compared natives’ and nonnatives’ abilities to recognize idiomatic expressions by their prosodic contours in a context-free environment. In some studies, significant differences between NSs and NNSs were found: NSs are on average more accurate than NNSs in identifying idiomatic expressions by their intonational contours. Binomials exhibit phonological features associated with proximal vs. distal deixis (Tanz, 1980), and with small vs. large size (Sapir, 1929; Ultan, 1978), while vowel alternations exemplified by *tick-tock*, *see-saw*, *pitter-patter*, etc. have been identified as sound-symbolic (Blake, 2017).

We emphasize, however, that in this study we do not examine binomials for their putative sound symbolic value. Rather, we are concerned with the phonetic rules or constraints that govern the irreversible ordering of constituents in binomials. Language users may have intuitions for these rules, and may be able to judge what sounds right and what doesn’t sound right in nonce sequences such as *resker* and *tesker* vs. *tesker* and *resker*; *kizzy-krizzy* vs. *krizy-kizzy*; *fibster* and *feabster* vs. *feabster* and *fibster*). Thus, our aim in this study is to investigate the degree to which people’s intuitions for what sounds right in binomials are non-arbitrary, thereby looking for evidence that “aesthetic judgments are not random, but clearly conform to a pattern” (Oakeshott-Taylor, 1984, p. 236).

2. Previous studies

Known in the linguistic literature under a variety of names (binomial locutions, binomials, freezes), this class of collocations has been examined in the work of Benor and Levy (2006), Bolinger (1962), Cooper and Ross (1975), Malkiel (1959), among others. Malkiel (1959) defined binomials as “the sequence of two words pertaining to the same form-class, placed on an identical level of syntactic hierarchy, and ordinarily connected by some kind of lexical link” (p.113). A few examples of English and French binomials are listed in (1).

(1) a. English: *kit and caboodle*, *wheeling and dealing*, *salt and pepper*, *spic and span*, *love and leave*, *fair and square*, *razzle-dazzle*, *wissy-washy*, *hanky-panky*

b. French: *par monts et par vaux*, *à hue et à dia*, *ni feu ni lieu*, *sans tambour ni trompette*, *ni foi ni loi*, *bique et bouc*, *méli-mélo*, *charivari*, *tohu-bohu*

Note that the constituents in binomials can be either coordinated (e.g., *salt and pepper*) or linked by a hyphen (e.g., *razzle-dazzle*). Following Birdsong (1979), the former type will be referred to as conjoined binomials, and the latter type as reduplicative binomials. It is important to highlight here that the inclusion of the reduplicative type into the category of binomials could be problematic. Indeed, Malkiel (1959) has pointed out that a “true” binomial originates from the “gradual rapprochement of two independent words” (p. 141), while playful compounds like *pitter-patter* have a single starting form, to
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات