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a b s t r a c t

Steady state noise techniques are widely known and applied to the monitoring of neutron reacting sys-
tem. This paper deals with the stochastic analysis of neutron chain systems (nuclear reactors or fissile
system) which are changing in time from subcritical states reaching other subcritical, critical or hyper-
critical states due to an external parametric excitation. Two cases are analyzed: 1) without reactivity
feedback, that is from a subcritical state to one with almost zero power, and 2) a supercritical excursion
with thermalhydraulic feedback. Our goal is to check in case 1 if the usual noise techniques can be used to
monitoring the reactivity changes and in case 2 how to calculate the variance of the power and energy
released.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the random nature of nuclear processes (fission in par-
ticular), nuclear reactors have a fluctuating neutron population
which is more evident at very low power levels. For steady subcrit-
ical and critical cases the theory of neutron noise is very well-
known and many noise techniques were developed to measure
nuclear parameters under steady conditions (Williams, 1974).
Under transient conditions, when the reactor parameters are
changing either under control or not, at least two questions arise:
1) if the system is under control, how the parameters that define
the reactivity have to change in order to have a quasi-
equilibrium value for the noise signatures during the transient, in
other words under which conditions we can apply known steady
noise techniques to monitor the transient, 2) for the case of an acci-
dental reactivity transient how to compute the fluctuations of the
power pulse and the energy release. We answer both questions
with the analysis of two real examples: for example, the monitor-
ing of the manipulations of fissile solutions (Mihalczo et al., 1990)
and the reactor accident analyzed by Difilippo (2015). The next
section summarizes the model and the mathematical tools for
the analysis of the non steady stochastic processes.

2. Probabilistic distribution of neutrons and the integrated
number of fissions for non-Steady state

In this section we generate a set of differential equations for the
first two moments of the distribution of the number of neutrons n

at time t and the integral of the numbers of fissions f, up to time t,
for a reacting system changing in time. We use the prompt one-
point kinetics to compute the time dependent fluctuations.
Because we want to analyze the case of parametric excitation our
point reactor parameters are now explicit function of time t (due
to the controlled, or not, parametric external changes) and function
of the state variables T (for short) due to thermalhydraulic
feedbacks.

2.1. Probability distribution function

Defining P(n, f, t) as the probability of having at time t, n neu-
trons in the system and f integrated number of fissions in our reac-
tor a difference-differential equation, or probability balance
equation, can be written for P(n, f, t) provided we have processes
defined in the following way: SðtÞDt is the probability for the emis-
sion of one neutron by the source in the interval Dt around t, sim-
ilarly Kf ðt; TÞDt, Kcðt; TÞDt, are the probabilities per neutron to
have, respectively, a fission or a capture at time t; note that this
probabilities depends explicitly on time (due to the external para-
metric excitation) and the set of thermalhydraulic variables (den-
sities, temperatures, pressures etc), called ‘‘T ” for short, due to
the reactivity feedback. P(n, f, t +Dt) is related to P(n, f, t) by the
equation

Pðn; f ; t þ DtÞ ¼ Pðn� 1; f ; tÞSðtÞDt þ Pðnþ 1; f ; tÞðnþ 1ÞKcDt

þ
X1
j¼1

Pðn� jþ 1; f � 1; tÞKf ðn� jþ 1ÞpðjÞ

þ ½1� ðSðtÞ þKcnþKf nÞDt�Pðn; f ; tÞ ð1Þ
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Each term in the right hand side of this equation indicates the
contributions to the state (n,f) at time t + Dt from states a t: 1) from
state (n�1,f) via a neutron source contribution; 2) from state (n+1,
f) via a capture process; 3) from a state (n�j+1,f�1) via an absorp-
tion process that produces a fission and j prompt neutrons with
probability p(j); and 4) from a state (n,f) when nothing happens
in Dt. Note we are making the hypothesis that times t are short
compared with the decay times of the delayed neutron precursors,
i.e. we are using the prompt approximation. By multiplying both
sides by xnz f and summing over all the possible values of n and f
we obtain that the probability generating functions

Fðx; z; tÞ ¼
X1
n¼0

X1
f¼0

Pðn; f ; tÞxnz f

Fcðx; z; tÞ ¼
X1
n¼0

X1
f¼0

Kcðt; TÞPðn; f ; tÞxnz f

Ff ðx; z; tÞ ¼
X1
n¼0

X1
f¼0

Kf ðt; TÞPðn; f ; tÞxnz f

ð2Þ

satisfy the equation

@F
@t

¼ SðtÞðx� 1ÞF þ @Fc

@x
ð1� xÞ þ ½zpðxÞ � x� @Ff

@x
ð3Þ

where we emphasize the changes in time of S, and the parametric
dependence of the nuclear parameters Kf and Kc . For the case of
constant reactor parameter Eq. (3) was analyzed in detail by
Pacilio (1976) Eq. (3), p(x) is

pðxÞ ¼
X1
mp¼0

xmppmp ð4:1Þ

where pmp is the probability of the emission of mp prompt neutrons
in the fission process, of course the ‘‘infinite” in Eqs. (1) and (4.1)
are formal, in reality up to ‘‘what we know” of the fission process.
The factorial moments of the number of prompt neutron appears
in the next equation so for further use we define

�mp ¼ @pðxÞ
@x

� �
x¼1

¼
X1
mp¼0

mppmp ð4:2Þ

< mpðmp � 1Þ >¼ @2pðxÞ
@x2

 !
x¼1

¼
X1
mp¼0

mpðmp � 1Þpmp ð4:3Þ

Any moment of the distribution P(n, f, t) can be calculated with
the factorial moments which are solutions of a system of ordinary
differential equations. More explicitly, the (m + i) partial derivative
of F with respect to x (m times) and with respect to z (i times) eval-
uated with Eq. (2) at x = z = 1 is

@ðmþiÞ

@xm@zi
@F
@t

 !
x¼z¼1

¼ nðn� 1Þðn� 2Þ . . . ðn�mþ 1Þf ðf � 1Þðf � 2Þ . . . ðf � iþ 1Þih
ð5Þ

where the bracket indicate the average with the distribution P(n,f,
t).Now these equations are not sufficient to compute the moments
because of the parametric excitations so we need the additional
modeling of the external reactivity changes and the thermodynamic
feedback.

2.2. System of differential equations for the factorial moments

The partial derivatives of @F=@t in Eq. (5) are calculated accord-
ing to the right hand side of Eq. (3). Because we cannot factorize Kc

and Kf out of the sums in Eq. (2) there is a correlation between the
reactor parameters and the neutron and fission distributions via
the thermalhydraulic set of variables T. Explicitly for the first two
moments we have

d < n >

dt
¼ SðtÞþ < ð�mpKf �KaÞn > ð6:1Þ

where Ka ¼ Kc þKf

d < f >
dt

¼< Kf n > ð6:2Þ

d < nðn� 1Þ >
dt

¼ 2S < n > þ < mpðmp � 1Þ >< Kf n >

þ 2 < ð�mpKf �KaÞnðn� 1Þ > ð7:1Þ

d< nf >
dt

¼< ð�mpKf �KaÞnf >þS< f >þ<Kf nðn�1Þ>þ�mp <Kf n>

ð7:2Þ
and

d < f ðf � 1Þ >
dt

¼ 2 < Kf nf > ð7:3Þ

We introduce now the more standard parameters: mean life
l ¼ 1=Ka, multiplication constant k ¼ �mKf =Ka, the reactivity,
q ¼ ðk� 1Þ=k, the prompt decay constant a ¼ �Ka þ �mpKf ¼
ðq� bÞ=Kg , where Kg ¼ l=k is the generation time. Eqs. (6) and
(7) can be written as

d < n >

dt
¼ SðtÞþ < an > ð8:1Þ

d < f >
dt

¼< n=Kg > =�m ð8:2Þ

d < nðn� 1Þ >
dt

¼ 2S < n > þ < mpðmp � 1Þ >< n=Kg > =�m

þ 2 < anðn� 1Þ > ð9:1Þ

d < nf >
dt

¼< anf > þS < f > þ < nðn� 1Þ=Kg > =�m

þ ð1� bÞ < n=Kg > ð9:2Þ

d < f ðf � 1Þ >
dt

¼ 2 < nf=Kg > =�m ð9:3Þ

Examples for the solutions of Eqs. (8) and (9) are given for two
cases: the first one a subcritical transient with the reactivity chang-
ing in time and without any thermal feedback or dependence on n,
for this case we have exact solutions; the second case corresponds
to the accidental supercritical power excursion recently described
by Difilippo (2015); because of the thermal hydraulic feedback
(that depends on n) some simplifying hypothesis has to be
included for this case.

3. Fluctuations during a transient between two subcritical
states without thermal hydraulic feedback

Changes in the system are usually monitored with a neutron
source and a detector, examples are the approach to the critical
state of any reactor or, for example, the monitoring of changes in
fissile solutions with noise techniques (Mihalczo et al., 1990).
Because of the assumption of very low power no thermohydraulic
effects exist and the changes of the nuclear parameter are only
function of time and therefore can be factorized out of the averages
in Eqs. (8) and (9),
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