Accepted Manuscript

Temperature-aware Dynamic Voltage and Frequency Scaling enabled MPSoC Modeling using Stochastic Activity Networks

Golnaz Taheri, Ahmak Khonsari, Reza Entezari Maleki, Mohammad Baharloo, Leonel Sousa

PII: S0141-9331(17)30465-9
DOI: 10.1016/j.micpro.2018.03.011
Reference: MICPRO 2670

To appear in: Microprocessors and Microsystems

Received date: 12 October 2017
Revised date: 9 February 2018
Accepted date: 29 March 2018

Please cite this article as: Golnaz Taheri, Ahmak Khonsari, Reza Entezari Maleki, Mohammad Baharloo, Leonel Sousa, Temperature-aware Dynamic Voltage and Frequency Scaling enabled MPSoC Modeling using Stochastic Activity Networks, Microprocessors and Microsystems (2018), doi: 10.1016/j.micpro.2018.03.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Temperature-aware Dynamic Voltage and Frequency Scaling enabled MPSoC Modeling using Stochastic Activity Networks

Golnaz Taheria,*, Ahmak Khonsaria,b, Reza Entezari-Malekia, Mohammad Baharloob, Leonel Sousac

aSchool of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
bDepartment of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
cINESC-ID, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal

Abstract

The CMOS technology scaling brings new challenges in temperature, reliability, performance and leakage power. Most of the thermal management techniques compromise performance to control thermal behavior of the system by slowing down or turning off processors. In this paper, we use Stochastic Activity Networks (SANs) to model and evaluate the power consumption of a multi-core system with respect to thermal constraints. The Dynamic Voltage and Frequency Scaling (DVFS) technique is used, in our proposed model, for dynamically controlling the temperature of cores. We define multiple thresholds for the temperature of cores and apply the DVFS technique, by assigning lower voltage/frequency to the core with higher temperature. Results obtained from analytically solving the proposed SAN model are compared with the data gathered from experiments on a quad-core system. The accuracy of the proposed model in evaluating power consumption of six CPU-intensive applications is higher than 90% when compared with the experimental data.

Keywords: Thermal management, dynamic voltage and frequency scaling, stochastic activity network, multi-core, CPU-intensive application.

1. Introduction

Aggressive scaling of CMOS technology due to the constant demands for more performance is the main reason behind the increasing of power density. Due to this significant high power density, temperature-related problems have become a major concern in system design \cite{1}. These issues come from the fact that temperature has direct impact on the reliability, performance, cooling cost and power consumption, which are basically operated
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات