Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams

Trung-Kien Nguyen, Ba-Duy Nguyen, Thuc P. Vo, Huu-Tai Thai

PII: S0263-8223(17)31274-6
DOI: http://dx.doi.org/10.1016/j.compstruct.2017.06.036
Reference: COST 8623

To appear in: Composite Structures

Please cite this article as: Nguyen, T.-K., Nguyen, B.-D., Vo, T.P., Thai, H.-T., Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams, Composite Structures (2017), doi: http://dx.doi.org/10.1016/j.compstruct.2017.06.036

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams

Trung-Kien Nguyena,*, Ba-Duy Nguyena,b, Thuc P. Voc,d, Huu-Tai Thaie

aFaculty of Civil Engineering, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan Street, Thu Duc District, Ho Chi Minh City, Viet Nam
bFaculty of Civil Engineering, Thu Dau Mot University, 6 Tran Van On Street, Phu Hoa District, Thu Dau Mot City, Binh Duong Province, Viet Nam
cDuy Tan University, Da Nang, Viet Nam
dFaculty of Engineering and Environment, Northumbria University, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK.
eSchool of Engineering and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia

Abstract

The hygro-thermal effects on vibration and buckling analysis of functionally graded beams are presented in this paper. The present work is based on a higher-order shear deformation theory which accounts for a hyperbolic distribution of transverse shear stress and higher-order variation of in-plane and out-of-plane displacements. Equations of motion are obtained from Lagrange’s equations. Ritz solution method is used to solve problems with different boundary conditions. Numerical results for natural frequencies and critical buckling temperatures of functionally graded beams are compared with those obtained from previous works. Effects of power-law index, span-to-depth ratio, transverse normal strain, temperature and moisture changes on the results are discussed.

Keywords: Advanced composite beams; Hygro-thermal loadings; Buckling; Vibration.

1. Introduction

Hygro-thermal stresses arising from a variation of temperature and moisture content can affect structural responses of engineering structures. Therefore, an accurate evaluation of environmental exposure is important to investigate hygro-thermal effects on their behaviours. Owing to the low density and high stiffness and strength, composite structures become popular in several applications of aerospace, automotive engineering, construction, etc. They became more attractive due to an introduction of functionally graded (FG) materials. The general benefit of these structures compared to conventional ones is a continuous variation of hygro-thermo-elastic properties in a required direction so that interfacial issues found in laminated composite structures could be neglected.

*Corresponding author, tel.: +848 3897 2092
\textit{Email address:} kiennt@hcmute.edu.vn (Trung-Kien Nguyen)
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات