Accepted Manuscript

Outdoor thermal comfort study in the underneath-elevated-building (UEB) area: On-site measurements and surveys in Hong Kong

Taiyang Huang, Jianong Li, Yongxin Xie, Jianlei Niu, Cheuk Ming Mak

PII: S0360-1323(17)30429-8
DOI: 10.1016/j.buildenv.2017.09.015
Reference: BAE 5094

To appear in: Building and Environment

Received Date: 5 July 2017
Revised Date: 4 September 2017
Accepted Date: 11 September 2017

Please cite this article as: Huang T, Li J, Xie Y, Niu J, Mak CM, Outdoor thermal comfort study in the underneath-elevated-building (UEB) area: On-site measurements and surveys in Hong Kong, Building and Environment (2017), doi: 10.1016/j.buildenv.2017.09.015.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Outdoor thermal comfort study in the underneath-elevated-building (UEB) area:

On-site measurements and surveys in Hong Kong

Taiyang Huanga, Jianong Lia, Yongxin Xiea, Jianlei Niub,*, Cheuk Ming MAKa

a Department of Building Services Engineering, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong
b Faculty of Architecture, Design and Planning, The University of Sydney, Australia
* Corresponding author. Email address: jianlei.niu@sydney.edu.au

Abstract:

The growth of cities intensifies the urban heat island effect by obstructing and weakening the incoming wind and thus deteriorates thermal comfort in the pedestrian level. The elevated building design is believed to be able to create some localized comfort spots at precinct scale, but no researches on pedestrians’ thermal perceptions in the area underneath an elevated building (UEB) have been reported. In this study, simultaneous on-site meteorological measurements and questionnaire surveys of 1,107 human subjects were conducted in a university campus in Hong Kong. Three outdoor thermal comfort assessing models, PET, UTCI and UC-Berkeley model were compared. The survey results indicate that the UEB area is significantly (\(\alpha=0.05\)) more comfortable in hot weather without extra discomfort in cold weather. All three models outputs correlate well with the subjects’ mean thermal sensation votes in linear regression (R\(^2\)≈ 0.9). Yet, shifts in neutral indices (6.2K, 5.8K and 1.1 respectively for PET, UTCI and UC-Berkeley model) appeared when comparing the correlation results separately for the UEB areas and open areas, indicating that the impacts of solar radiation and wind or the lack of them on pedestrian’s thermal comfort perceptions have not been well predicted by the three models. These investigations, on the one hand, characterize the benefits that elevated building designs have on the pedestrian-level microclimate and provide references and inspirations for urban planners to enhance pedestrian thermal comfort by altering building designs; on the other hand, indicate the need to refine the thermal comfort models for better outdoor thermal comfort assessment.

Keywords:

Outdoor thermal comfort, thermal comfort assessing model, underneath-elevated-building area, on-site measurement, questionnaire survey

Nomenclature

Outdoor thermal comfort, thermal comfort assessing model, underneath-elevated-building area, on-site measurement, questionnaire survey
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات